CalEmber - A Fire Damage Prediction & Insurance Assessment Tool Final Presentation: 12/09/24

Michelle Cheung Ishika Prashar Jackie Wang Hao Xie

Problem - California Wildfires and Insurance

Lucrative housing market

B

Fluctuating Insurance Market

High Fiscal Impact

\$87,290,000,000 → Total California Wildfire Cost 1980 - 2021

\$9,000,000,000 California property insurance market annual premiums

359,831 - Residential properties sold in CA over past 12 months

Expert Interview - Micah Mumper, PhD

Role: Research Data Specialist at California Department of Insurance

Insurance premium calculation via regression modeling

Uninsured homeowners

Cal Fire Damage Inspection (DINS) Data

Structures damaged by wildfires from 2013 - 2021

Key categories → home metrics, risk features

Damage levels:

Data Preprocessing: AWS location services, one hot encoding, ordinal scale

Secondary Data Sources

California Department of Insurance Personal Property Experience Data	 2009-2021 Fire loss, premiums, insurance metrics Used for dashboards
<u>Fire Hazard Severity</u> <u>Zones</u>	 Regions in state with moderate, high, and severe fire severity scores Used for zip code severity look-up tool

Fluctuations in Fire Losses & Increased

Initial Modeling

Model	Accuracy (Test Set)	Comments
Baseline	57.9%	• Always predict majority class damage level 4
Linear Regression	39%	 RMSE 1.11 Key features - single residence, roof, siding
Recurrent Neural Network with LSTM	36%	No sequential pattern between damage and input metrics
K Nearest Neighbors	77%	Well suited for geographic regions
Support Vector Machine	87%	• These models perform well on the majority classes (0 and 4), but is unable to predict the minority
Random Forest	93%	classes (1, 2, and 3) correctly - class imbalance
LightGBM	93.2%	
XGBoost	93.3%	

Class Imbalance Concerns

Classifica	tion	Report: precision	recall	f1-score	support
No damage	0	0.92	0.97	0.95	2954
low damage	1	0.63	0.42	0.50	317
minor damage	2	0.26	0.12	0.17	73
major damage	3	0.19	0.11	0.14	27
destroyed	4	0.96	0.96	0.96	4625
accura	су			0.93	7996
macro av	/g	0.59	0.52	0.54	7996
weighted av	/g	0.92	0.93	0.93	7996

Model Optimization - Part 1

 → SMOTE (Synthetic Minority Oversampling Technique) oversampling minority classes in attempt to resolve class imbalance
 → Random gridsearch for optimized hyperparameters

 \rightarrow Combine multiple models

En	isem	nble – Voti	ng Clas	sifter		XGBoost	only			
		precision	recall	f1-score	support		precision	recall	f1-score	support
	0	0.93	0.98	0.95	2954	0	0.92	0.97	0.95	2954
	1	0.56	0.45	0.50	317	1	0.54	0.46	0.50	317
	2	0.25	0.23	0.24	73	2	0.29	0.22	0.25	73
	3	0.14	0.11	0.12	27	3	0.13	0.11	0.12	27
	4	0.97	0.95	0.96	4625	4	0.96	0.94	0.95	4625
accu	iracy			0.93	7996	accuracy			0.92	7996
macro	avg	0.57	0.54	0.55	7996	macro avo	0.57	0.54	0.55	7996
weighted	avg	0.93	0.93	0.93	7996	weighted avg	0.92	0.92	0.92	7996

Reframing the Problem

Refined approach \rightarrow what matters most to homeowners?

• Solution → simplified damage outputs

Old approach:

Model Optimization - Part 2

Merging minority damage classes

2

- Part 1 model optimization Learnings
 - XGBoost, Unscaled, SMOTE

Feature Reduction

- From 60 model features to 30

Hyperparameter Tuning

- L1 & L2 regularization
- 100 trees (n-estimators) with max depth 10 each tree
- 60% of features can be used for each tree max

Final Model Results

		precision	recall	f1-score	support
No damage	0	0.94	0.97	0.95	2954
Moderate Damage	1	0.82	0.52	0.64	417
destroyed	2	0.95	0.96	0.96	4625
accurad	сy			0.94	7996
macro av	/g	0.90	0.82	0.85	7996
weighted av	/g	0.94	0.94	0.94	7996

Feature Details

Feature Importance

Features

Technical Model Evaluation

Galanis, M., Rao, K., Yao, X., Tsai, Y.-L., Ventura, J., & Fricker, G. A. (2021). DamageMap: A post-wildfire damaged buildings classifier. International Journal of Disaster Risk Reduction, 65, 102540.

BER

Test Set	Accuracy	F1
1	0.92	0.96
2	0.98	0.96

		precision	recall	f1-score	support
	0 1 2	0.94 0.82 0.95	0.97 0.52 0.96	0.95 0.64 0.96	2954 417 4625
accur macro weighted	racy avg avg	0.90 0.94	0.82 0.94	0.94 0.85 0.94	7996 7996 7996

Demo: CalEmber User Perspective

User Interviews

<u>Conducted user interviews from 13 people of various ages & professions to get feedback on our MVP</u>

User 1 (Name and Occupation):	
Walkthrough of website and explanation	Live Demo
Q1: How clear is this tool to use? Scale of 1-5 (1 is unclear, 5 is very clear)	
Q2: Is the tool easy to understand without any further background regarding data science or wildfire knowledge? Scale of 1-5 (1 is not easy, 5 is very easy)	
Q3: How well does this website help answer our research question/objective? Scale of 1-5 (1 is not well, 5 is very well)	
Q4: Any feedback on the visuals/navigation/website appearance?	
Q5: Any feedback on the content of the	

website that would make it better for

consumers?

Q1: How clear is this tool to use? Scale of 1-5

• Average score: **4.5**

Q2: Is the tool easy to understand without any further background regarding data science or wildfire knowledge? Scale of 1–5

• Average score: **4.23**

 Q3: How well does this website help answer our research question or objective? Scale of 1–5

Average score: 4.73

Q4: Any feedback on the visuals/navigation/website appearance?

 Implemented changes in navigation and sectioning of content to make it more user-friendly

Q5: Any feedback on the content of the website that would make it better for consumers?

• Updated information on webpage to make it more informative and helpful from a potential California homeowner's POV

Potential Next Steps

Connect and communicate more with the source of data

• Limitations of our data

Synthesis between damage and insurance

• Could be interesting to project insurance cost ranges given wildfire risks, projected damage level, and other housing characteristics

Feature recognition through images into the model pipeline

• User can just input pictures of their houses and the features will be picked up

Ethics/Privacy

Unexpected Uses

Data Limitations

Re-Identification

Use of the tool beyond informative purposes – pricing/bias

Ultimately, not every insurance company is represented in our data - could cause bias Zip Codes with limited properties may make it easy to identify homeowners of the area

Conclusion

End Result: A working prediction tool for users and interactive dashboards showing different insurance metrics and damages across California!

Helping homeowners understand how **specific property features influence risk and damage**, enabling them to make targeted improvements that **save lives**, **protect properties**, and **reduce insurance costs**

Providing **transparent insurance insights and fire severity insights** for current and prospective California residents, regardless of homeowner status

CalEmber empowers existing and future **California homeowners by** providing transparent information on fire damage and insurance rates using data driven insights - results they can trust! Thank you!

Appendix

Acknowledgment:

We extend our deepest gratitude to our advisors, Joyce Shen and Morgan Ames, for their invaluable feedback and steadfast support throughout the semester. We also wish to express our sincere appreciation to Micah Mumper, Research Data Specialist at the California Department of Insurance, for sharing his domain expertise. Finally, we thank our colleagues, friends, and family for their participation in user testing and for providing insightful feedback that greatly contributed to the success of this project.

Appendix

<u>Datasets:</u>

- Fire Hazard Severity Zones from California Open Data Portal [<u>link</u>]
- Residential Property Insurance from CA Department of Insurance [link]
- Property Market Share Data by California Department of Insurance [link]
- Zip Code Level Premium & Exposure data from CA Department of Insurance [link]
- Data and Analysis and Wildfires and Insurance from CA Department of Insurance [link]
- California Fire Incidents from CalFire [link]

References:

- CNN [link]
- Redfin [link]
- SF Chronicle [link]
- LA Times [link]
- ATTOM [link]

Appendix: Key Data Processing Steps

Damage Data	 AWS location services to transform lat/long into zip code One hot encode categorical variables Transform damage to ordinal scale
Insurance Data	• Estimate missing years
Fire Severity Zones	 GeoPandas transformations Conversion to Zip Code Regions

Appendix: Architecture → Data to Final Solution

Appendix: EDA

Appendix: EDA

Appendix: Key EDA

State	Wildfire Cost (Billions)	Percentage of U.S. Total	Annual Cost per Capita (Dollars)	Annual Cost per Square Km (Dollars)
			(20110)	(20110)
California	\$87.29	73%	\$53	\$4,902
Colorado	\$5.27	4%	\$22	\$465
Oregon	\$4.97	4%	\$28	\$464
Montana	\$2.91	2%	\$65	\$182
Texas	\$2.85	2%	\$2	\$97
Idaho	\$2.85	2%	\$39	\$313
Washington	\$2.51	2%	\$8	\$324
Alaska	\$2.03	2%	\$66	\$28
Tennessee	\$1.64	1%	\$6	\$357
New Mexico	\$1.42	1%	\$16	\$108
Utah	\$1.25	1%	\$9	\$135
Arizona	\$1.17	1%	\$4	\$95
Nevada	\$1.11	1%	\$9	\$92
Wyoming	\$0.98	1%	\$40	\$92
Alabama	\$0.66	1%	\$3	\$116
Oklahoma	\$0.31	0%	\$2	\$41
Florida	\$0.28	0%	\$0	\$39
Georgia	\$0.27	0%	\$1	\$41
South Dakota	\$0.10	0%	\$3	\$11
Minnesota	\$0.09	0%	\$0	\$10
North Carolina	\$0.08	0%	\$0	\$14
Nebraska	\$0.05	0%	\$1	\$6
Mississippi	\$0.04	0%	\$0	\$7
North Dakota	\$0.01	0%	\$0	\$2
United States	\$120.13	100%	\$9	\$21

Appendix: Updates 9/30/24

- Continued literary review • Research paper: "Catastrophe Models for Wildfire Mitigation: Quantifying Credits and Benefits to Homeowners and Communities" [link]
- Able to find more supporting evidence for the impact of our project
- Hone in on our modeling approach

Appendix: Overall Architecture

Appendix: Modeling

Initial models tested and considerations:

- <u>Linear Regression</u>: helps identify basic patterns and relationships between the data, find highly statistically significant correlations between damage level and other features
- <u>Random Forest Classifier, LightGBM, & XGBoost:</u> perform well for data that includes a variety of features that are in mixed categories such as ordinal, categorical, and numerical
- <u>Recurrent Neural Network with LSTM</u>: handle sequential data (multiple years in our dataset)
- <u>K-Nearest Neighbors</u>: naturally suited for geographic data, easy to explain and interpret for users
- <u>Support Vector Machine</u>: robust and handles noise well, flexible and takes in "mixed" types of data

In-depth evaluation of these models in following slides

Appendix: Modeling - Part 1

Baseline	Majority Class • 4 - greater than 50% damage • 57.9% accuracy
Linear Regression	 Linear: RMSE: 1.11, 60+ features → feature selection during optimization phase 39% accuracy Outcome variable ordinal from 0-4, larger values representing higher % of damage Notable features include single residence, roof construction, and fencing
Recurrent Neural Network with LSTM	Train Accuracy: 36% Test Accuracy: 36% Poor performance: Does not perform well, implies that there may not be a strong sequential (time based) relationship between the damage prediction and features perhaps because the level of damage a wildfire can cause may vary
K-Nearest Neighbors	Train Accuracy: 81% Test Accuracy: 77%

Appendix: Model Improvements

Linear Regression

- Process:
 - dropping statistically insignificant features at alpha=0.05 level
 - dropping features that have low correlation (less than |0.1|)
 - iterative process completed 4 times
 - final product: dropped 40+ features and ended up with 18 final features

- Plotted Feature Correlation Matrix and Hierarchical Feature Heatmap

- Best accuracy throughout process: 39%
- Lowest RMSE: 1.11
- Not a good final model

Linear Regression Results

Dependent variable:

X..Damage

Note:	*p<0.1; **p<0.05; ***p<0.01
R2 Adjusted R2 Residual Std. Error F Statistic	0.551 0.551 1.289 (df = 28051) 1,911.551*** (df = 18; 28051)
Observations	28,070
EXP_YEAR EARNED_PREMIUM month XRoof.Construction_Asphalt XRoof.Construction_Fire.Resistant XRoof.Construction_Tile XEaves_Unenclosed XVent.Screen_No.Vents XVent.Screen_Screened XExterior.Siding_Combustible XExterior.Siding_Fire.Resistant XExterior.Siding_Ignition.Resistant XExterior.Siding_Stucco.Brick.Cement XWindow.Pane_Single.Pane XDeck.Porch.Elevated_No.Deck.Porch Structure.Defense.Action.TakenYes Constant	$\begin{array}{c} -0.357*** (0.008) \\ -0.00000*** (0.000) \\ -0.149*** (0.007) \\ 0.450*** (0.021) \\ 0.227*** (0.037) \\ -0.313*** (0.043) \\ -0.408*** (0.018) \\ -0.311*** (0.027) \\ -0.138*** (0.035) \\ 1.661*** (0.030) \\ 1.600*** (0.044) \\ 1.708*** (0.034) \\ 0.575*** (0.033) \\ 0.613*** (0.018) \\ 0.410*** (0.018) \\ 0.410*** (0.019) \\ -0.365*** (0.023) \\ -1.108*** (0.039) \\ 716.119*** (16.125) \end{array}$
Longitude	-0.056*** (0.006)

Appendix: Model Improvements

Feature Correlation Matrix

Hierarchical Feature Heatmap

Appendix: Modeling - Part 2

Support Vector Machine	Train Accuracy: 88% Test Accuracy: 87% Missing minority classes: The model is performing well on the majority classes (0 and 4), but is unable to predict the minority classes (1, 2, and 3) correctly
Random Forest	Train Accuracy: 99% Test Accuracy: 93%
LightGBM	Train accuracy: 97.2% Test accuracy: 93.2% Imbalance Problem: The model performs well on the majority classes (0 and 4) but struggles with the minority classes (like 1, 2, 3)
XGBoost	Train Accuracy: 97% Test Accuracy: 93.3% Imbalance Problem: The model performs well on the majority classes (0 and 4) but struggles with the minority classes (like 1, 2, 3)

h Appendix: Modeling Problem - Class Imbalance

Best performing model:

XGBoost

Classification	Report: precision	recall	f1–score	support
0	0.92	0.97	0.95	2954
1	0.63	0.42	0.50	317
2	0.26	0.12	0.17	73
3	0.19	0.11	0.14	27
4	0.96	0.96	0.96	4625
accuracy			0.93	7996
macro avg	0.59	0.52	0.54	7996
weighted avg	0.92	0.93	0.93	7996

Appendix: Modeling - Optimization Part 1

Final model choice - XGBoost: best model performance thus far

• SMOTE undersampling minority classes and oversampling majority classes in attempt to resolve class imbalance

Non-Scaled

- Random gridsearch for optimized hyperparameters
- Scaled vs unscaled data

Scaled

	precision	recall	f1-score	support		precision	recall	f1-score	support
0 1 2 3 4	0.93 0.56 0.25 0.14 0.97	0.98 0.45 0.23 0.11 0.95	0.95 0.50 0.24 0.12 0.96	2954 317 73 27 4625	0 1 2 3 4	0.92 0.54 0.29 0.13 0.96	0.97 0.46 0.22 0.11 0.94	0.95 0.50 0.25 0.12 0.95	2954 317 73 27 4625
accuracy macro avg weighted avg	0.57 0.93	0.54 0.93	0.93 0.55 0.93	7996 7996 7996	accuracy macro avg weighted avg	0.57 0.92	0.54 0.92	0.92 0.55 0.92	7996 7996 7996

Appendix: Feature Importance

> 60 features currently in model (due to categories being one hot encoded), top features plotted

Appendix: Modeling - Optimization Part 2

- Previously noted that class imbalance issue remained with SMOTE, based on capstone instructor feedback we decided to collapse minority classes into one category
- This made sense as users most likely do not care about a 10% versus 20% difference in damage but rather would prefer a simplified output which we can achieve
- New classes are 0 for no damage, 1 for mild damage (greater than 0% to less than or equal to 50% damage) and 2 for moderate damage (greater than 50% damage)
- Reduction of features by removing few at a time and monitoring performance 30 features kept led to optimal performance with minimal accuracy decreases

Final choices

- Non-scaled data fits better as majority of features one hot encoded, don't necessarily fit classic normalization and may impact overall data pipeline and interpretability of results
- Reduced feature classes
- 30 features total chosen for XGBoost Model
- Key parameters: L1 & L2 regularization to help reduce overfit, 100 trees (n-estimators) with max depth 10 each tree, 60% of features can be used for each tree max

Appendix: Final Model Evaluation

Compare evaluation metrics

- Accuracy, and F1 score of each class, which accounts for both recall and precision
- Similar study: 92% and 98% accuracy on two test sets with a F1 score of 0.96

	precision	recall	f1-score	support
0	0.94	0.97	0.95	2954
1	0.83	0.57	0.68	417
2	0.96	0.97	0.96	4625
accuracy			0.94	7996
macro avg	0.91	0.83	0.86	7996
weighted avg	0.94	0.94	0.94	7996

Table 1. Evaluation metrics of the model on each dataset. Refer to sec. 3.1 for definitions of metrics.

Dataset			Accuracy	Precisio	n	Recall	F1 Score			
xBD wildfires (validation set)			0.98	0.98 0.99		0.98	0.98			
Camp Fire (Test set 1)			0.92	0.92		0.99	0.96			
Carr Fire (Test set 2)				0.98	0.97		0.95	0.96		
	Validation set (xBD)		Camp Fire			Carr Fire				
True labels Damaged Undamaged	4835	84		773	1204		1617	14		
	123	6111		29	13925		27	479		
	Undamaged Damaged Predicted labels		Undamaged Predicte	Damaged d labels		Undamaged Predic	Damaged ted labels			

Appendix: Conclusion

<u>Main Takeaways:</u> Our efforts on this data science project have proven fruitful!

- **Great team dynamics** and apportioning of semester-long project tasks and checkpoints alongside learning how to use new tools
- Extensive data searching, merging, cleaning, etc. to create a unique new dataset
- Implemented multiple ML models with repeated efforts in optimization
- Familiarity with AWS, Sagemaker, and
 S3 bucket functionalities
- Website creation and hosting our solution

<u>End Result:</u> A working prediction tool for users and interactive dashboards showing different insurance metrics and damages across California!

- Intersection of advanced machine
 learning and impactful decision-making
- Helping homeowners understand how specific property features influence risk and damage, enabling them to make targeted improvements that save lives, protect properties, and reduce insurance costs
- Providing transparent insurance insights and fire severity insights for current and prospective California residents, regardless of homeowner status

Appendix: Note

At the end of the final class, via email, please share with instructors final presentation slides, web deliverable link, and any supplemental materials within a day of the live session.