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McKinsey & Company, AI power: Expanding data center capacity to meet growing demand

Behind Every AI is a Data Center

https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/ai-power-expanding-data-center-capacity-to-meet-growing-demand


Average Daily Water Withdrawn

300,000 Gal.

52% of DCs
Using Medium to High Stress Watersheds

Ana Pinheiro Privette, AI's Challenging Waters
Understanding Water Availability | U.S. Geological Survey
Planet Tracker, AI needs to reduce its water dependency 

Water: The Unseen Resource 

Water Basins Facing Shortages in 50 Years

96 of 204

https://cee.illinois.edu/news/AIs-Challenging-Waters
https://www.usgs.gov/mission-areas/water-resources/science/understanding-water-availability
https://planet-tracker.org/ai-needs-to-reduce-its-water-dependency/


“A large focus for data center efficiency has been on minimizing energy use 
[...]. The need to minimize water consumption has received considerably 
less attention.”

- Ana Pinheiro Privette, University of Illinois Urbana-Champaign

Why Act Now?



Two Types of DC Water Consumption

Pengfei Li, Making AI Less “Thirsty”: Uncovering and Addressing the Secret Water Footprint of AI Models

Water used indirectly in 
generating electricity for the data 

center.
Water used 
directly for 

server cooling 
at the data 

center.

https://arxiv.org/pdf/2304.03271


Measuring Efficiency Through 
Water Usage Effectiveness (WUE)

“By exploiting spatial-temporal diversity of water efficiency, we can dynamically schedule AI 
model training and inference to cut the water footprint.”

- Pengfei Li et al., University of California - Riverside

WUE [L/kWh] is the industry standard metric for water efficiency, with an ideal value of 0.

Pranjol Sen Gupta et al., A Dataset for Research on Water Sustainability

https://arxiv.org/pdf/2405.17469


Our Mission
HydroScale empowers data centers to optimize water efficiency with 72-hour, 

nationwide water usage effectiveness (WUE) forecasts, providing spatial and 
temporal insights for both on-site and off-site water.

Spatial aspect provides 
visibility into how water 

efficiency is related to local 
water scarcity impacts.

Forecasts enable DCs to 
compare anticipated water 
usage against regulatory 

and ESG benchmarks.

BenchmarkingProactiveness

Forecasted WUE guide DCs 
in adapting their operations 
to avoid water inefficient 

times and locations.

Visibility



Data Sources
On-siteOff-site

● Time series WUE simulated from 
historical weather data

○ Time: 5 yrs, hourly

○ Space: 1153 weather stations

● Station geospatial metadata

● Time series WUE simulated from 
energy generation fuel mix data

○ Time: 5 yrs, hourly

○ Space: 19 eGRID regions

● eGRID bounding shapefiles

We follow the methodology in A Dataset for Research on Water Sustainability by Pranjol Sen 
Gupta et al. for simulating WUE based on our available data.

https://arxiv.org/pdf/2405.17469


Data Pipeline Overview
AWS S3

Data Ingestion

AWS EC2

Raw Data

Data Sources
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Off-Site WUE 
Forecasting



Off-site WUE Forecasting Methods

SARIMA

Write Chosen Forecast to S3

LSTM

TimesFM*

MAE, RSME, 
and MAPE 

Analysis

5 yr. Hourly Data
19 eGRID Regions Train (~3yrs)*

Forecast (72 hours)

Train/Val/Test Split Models

Backtest (72 hours)

*TimesFM accepts a maximum training window of 21 days



Off-site Modeling

SARIMA LSTM TimesFM

➔ Auto-ARIMA models 
with seasonal 
components

➔ 19 time series from 
unique eGRID 
regions 

➔  72 hr forecast

➔ 72 hr backtest

➔ Google foundational 
model

➔ 19 time series from 
unique eGRID regions 

➔  72 hr forecast

➔ 72 hr backtest

➔ Can only use 21 days 
of training data

➔ Sequential RNN
◆ adam optimizer
◆ relu activation
◆ mse loss

➔ 19 time series from 
unique eGRID regions 

➔  72 hr forecast

➔ 72 hr backtest



Model Evaluation (Off-site) 

SARIMA

LSTM

TimesFM



Model Evaluation (Off-site) 

Comparing model performance metrics for model types across all 19 eGRID regions (57 models total)



LSTM Evaluation (Off-site) 

Performing well Flatlining 



Model Selection (Off-site) 

SARIMA

Write Chosen Forecast to S3

Similar/better performance on RMSE, MAE, MAPE metrics 

Ability to expand to multivariate time series forecasting

Simpler and more reliable model can provide 
interpretability to end users

Fast to compute if we expand to live forecasting
Display in web app



On-Site WUE 
Forecasting

Images Credits: Aerco Systems and Meta

https://aercosystems.com/how-chillers-operate-winter-outside/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/


On-site WUE Forecasting Methods

SARIMA

Dynamic Time Warping

Canonical Time-series 
Characteristics

Geographic Partitioning 
(Baseline)

Feature Extraction Methods

Inter-cluster DTW barycenter average 
(DBA)

Silhouette 
and DBI 
Analysis

SARIMA SARIMA

Train (50-day window)

K-Means

K-Medoids

HDBSCAN

Clustering Methods

Self-organizing Map

Discover Model Orders for K 
Foundational Time Series

5 yr. Hourly Data
1153 Weather Stations

Backtest (72 hours)

Forecast (72 hours)



Simplifying with Time Series Clustering

● Clustering similar patterns and characteristics 
to derive foundational time series

● Eliminates the need for individual models

● Training and fine-tuning individual models for 
each of the 1000+ 4 year hourly locations 
doesn’t scale

Scalable Forecasts

Interpretability
● Geographically visualize locations with similar 

WUE profiles

Reduced Redundancy



Operationalizing Clusters

Feature-Based Clustering Shape-Based Clustering

Uses statistical and mathematical 
properties of time series

● Catch 22 (22 canonical statistical 
features capturing key time-series 
behaviors)

Directly compares the shapes of time 
series using pairwise similarity measures

● Dynamic Time Warping (time 
adjusted Euclidean distance)



Cluster Optimization

The “elbow point” where the improvement flattens is considered 
the optimal number of clusters

The optimal k is where the silhouette score is highest, indicating 
well-defined and well-separated clusters AND where the davies-bouldin 
index is lowest indicating compact and well-separated clusters

*Catch 22 K-Means



Time Series Clustering Candidates

Model Optimal Num. 
Clusters

Avg. 
Silhouette Avg. DBI Optimal Num. 

Clusters
Avg. 

Silhouette Avg. DBI

Geographic 
Partitioning 9 0.054 2.620 9 -0.037 3.975

K-Means 9 0.236 1.500 14 0.462 0.862

K-Medoids 10 0.226 1.988 4 0.114  2.760

HDBSCAN 7 -0.146 2.157 3 0.350 2.091

SOM 7  0.104  1.110 27 0.094 1.943

DTW Features Catch22 Features



Deriving Model Orders from DBA

ARIMA (2, 1, 2), (1, 0, 2, 24) ARIMA (2, 1, 3), (2, 0, 2, 24)

Dynamic Time Warping Barycenter Averaging (DBA) is a time series analysis method that uses 
Dynamic Time Warping (DTW) to create representative sequences for data categories.



Model Evaluation (On-site) 

Model Evaluation for 
Boulder (Hourly 
Granularity):

●  MAE: 0.0299
●  RMSE: 0.0375
●  MAPE: 2.75%



Catch22 K-Means DTW K-Means DTW K-Medoids

Mean 10.99 11.66 11.14

Standard 
Deviation 6.92 8.21 7.89

25% 6.82 6.72 6.54

50% 9.70 9.86 9.30

75% 13.47 14.17 13.47

Forecast Performance by Clustering Method
Metrics Shown for Mean Absolute Percent Error



Time Series Clustering Results

*Shown are example clusters from DTW K-Medoids

Geographic Distribution of Time Series Clusters Cluster Examples



Key Discoveries

Though LSTM and TimesFM are impressive, SARIMA 
models are dependable and deterministic

We use feature-based clustering to create 10 
representative cluster-level SARIMA models and use 
these to forecast city-level WUE data for 1153 
locations

Off-site WUE Forecasting

On-site WUE Forecasting

Image Credits: The Washington Post

https://www.washingtonpost.com/technology/2024/09/18/energy-ai-use-electricity-water-data-centers/


Ethical Considerations
Greenwashing

Overconsumption

“large companies often present their sustainability 
practices in a positive light [...] to give the appearance 
of greater sustainability” (McCauley).  

Unintentionally incentivizing data center construction, 
root problem of resource overconsumption in the 
tech world.

Awareness of water scarcity and water consumption by 
data centers (secretive industry). Information for 
communities to negotiate or fight back.

Local Impact

Images Credits: 100DaysofRealFood.com, ITU News, Associated Press

http://100daysofrealfood.com
https://www.itu.int/hub/2022/04/green-standards-sustainable-digital-transformation/
https://apnews.com/article/virginia-election-data-centers-prince-william-229cb44d34ccf4bd1cc4e9f0d0131649


Future Direction
Real-time Inference

Tailored Forecasts

Consider live forecasting by streaming data from our data sources, or batch forecasting 
by periodically updating our data and models..

Refine on-site WUE simulation to accommodate varying operational scenarios. 
Bolster off–site WUE methods by investigating additional data sources and 
multivariate forecasts.

Leverage insights to increase public awareness about the impact that data centers 
have on communities’ water supplies.

Outreach
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AWS Infra Specs
● EC2

○ Instance: c5.12xlarge (x10)
● Elastic MapReduce (EMR Studio)

○ Number of Spark drivers: 1
○ Size of driver: 4 vCPUs, 16 GB memory
○ Driver disk details: Standard, 20 GB disk
○ Number of Spark executors: 5
○ Size of executor: 4 vCPUs, 8 GB memory
○ Executor disk details: Standard, 20 GB disk

● Sagemaker (Shared Workspace)
○ Instance: ml.m5.2xlarge
○ Image: SageMaker Distribution 2.1.0
○ Storage (GB): 12
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