W205 Final Project - Summer 2014

Rahul Bansal
Lisa Kirch
Joe Morales
Christopher Walker
Correlating Stock Prices with Predictions from Twitter
The Problem

Twitter is a well-known messaging platform that allows users to express their sentiments on
nearly any topic worldwide. With 271 million active users monthly and 500 million tweets sent
daily, a fairly sizable corpus of sentiment is available for analysis. Several companies have
products that leverage this sentiment to provide information to investors, and there are a variety
of algorithms that may be employed to mine relevant sentiment from Twitter data. One such
company is Downside Hedge and their algorithm analyzes tweets made by specifically traders
and investors about trades and outlook. This strategy requires knowledge of specific traders
and investors and involves targeted searching for Tweets which relate to specific securities.
Another company with a slightly different strategy is Dataminr. They use proprietary algorithms
to analyze the entire Twitter stream (the “Firehose”) looking for Tweets that will turn out to be
indicators of breaking news or trends. This information is sold to both financial and news
clients.

George Box was a statistician made famous for this memorable quote, “All models are wrong,
but some are useful.” (http://en.wikipedia.org/wiki/George_E._P._Box). Peter Norvig, the
Director of Research at Google, caused a stir in 2008 when he put forth a new version of the
Box quote, “All models are wrong, and increasingly you can succeed without them.”
(http://archive.wired.com/science/discoveries/magazine/16-07/pb_theory). Norvig’s assertion is
that you don’t need a model if you have all the data and that it is becoming increasingly more
possible to gather, retain, and analyze all of the data. The algorithms described if the first
paragraph employ sophisticated models to make financial predictions from Twitter data. Our
goal with this project was to use information retrieval (IR) search mechanisms and sentiment
analysis to look for correlations between Twitter data and stock performance in the absence of a
model; a small test of Norvig’s assertion.

http://www.downsidehedge.com/twitter-indicators/
http://www.dataminr.com/about/
http://en.wikipedia.org/wiki/George_E._P._Box
http://archive.wired.com/science/discoveries/magazine/16-07/pb_theory

The Process

We started by building an IR system containing information about companies, specifically
information contained in the companies’ annual reports to the SEC. To scope the project, we
limited companies to those that are in the Standard and Poor’s 500 Index (S&P 500). We
gathered unfiltered Tweets over a period of time and determined the relevance of each Tweet
by performing a text search against the IR system using words from the Tweet which resulted in
a relevance score for each company for each Tweet. Tweets would be relevant to a company if
they contained words that were also contained in the company’s annual report. These words
include the company’s name, stock ticker symbol, products, officers’ names, and other less
obvious information. We also ran a sentiment analysis algorithm on each Tweet, resulting in
sentiment score of -1 for the most negative Tweets to + 1 for the most positive Tweets.
Multiplying the relevance score by the sentiment score for each Tweet for each company
resulted in an overall score that represents the sentiment value for that company at that point in
time; we called this score the TweetShift. We analyzed the stream of TweetShift data alongside
the stream of market price data, specifically the change in the market price, which we called
price shift. In order to scope the analysis, we analyzed aggregated TweetShift and price shift
data at 10 minute intervals.

Table 1: Tools and Methods

Purpose

Tools Used

Code Base

Github -
https://github.com/jmorales4/WW205-RJCL

Version Control

SourceTree by Atlassian

Storage

S3 -

http://ricl-tweets.s3.amazonaws.com/
http://ricl-stockquotes.s3.amazonaws.com/
http://10k-clean-data.s3.amazon.com

Twitter Sentiment Analysis

Python sentiment analysis courtesy Alex Davies
http://alexdavies.net/

Search / Relevance Scoring

Apache Solr

Hadoop Platform

Amazon Elastic MapReduce
Hadoop streaming using Python

Languages

Python (with tweepy, boto, BeautifulSoup, numpy, and
solrpy)

Perl

R

APls

Twitter
Solr
Yahoo Finance

Other

XML
JSON
Tableau

https://github.com/jmorales4/W205-RJCL
http://rjcl-tweets.s3.amazonaws.com/
http://rjcl-stockquotes.s3.amazonaws.com/
http://10k-clean-data.s3.amazon.com/
http://alexdavies.net/

Twitter Data

Python script on EC2

written every 15
seconds

Figure 1: Twitter Data

Twitter data was collected from the Twitter streaming API using the Python library Tweepy
(http://www.tweepy.org/). Access to the full Twitter “Firehose” is limited to Twitter partners, so
we were only able to retrieve a sample of the full stream, approximately 4000 tweets per minute.
A process was run on an Amazon Web Services (AWS) Elastic Cloud Compute (EC2) virtual
machine. This process remained subscribed to the sample stream and created a file for every
1000 received Tweets (approximately every 15 seconds). These files were stored on AWS
Simple Storage Service (S3). The process ran for approximately three weeks and stored about
97 million Tweets in 97,000 files totaling 269 GB of data. The Tweet files are available at
http://ricl-tweets.s3.amazonaws.com/.

Stock Quote Data

Perl script on EC2

- Files written to
53 with stock

quotes every 10
minutes

Figure 2: Stock Quote Data

The data flow diagram above shows how we went about collecting stock quote data for our
project. We developed a Perl script that utilized the Yahoo API to download stock quotes every
10 minutes for the S&P 500 tickers. The Perl script was deployed on an EC2 instance and wrote
files to an S3 bucket every 10 minutes. Each file was approximately 82 KB and we generated
144 files per day for 2 weeks, resulting in 2016 files or 161.4 MB of data. The files were
pipe-delimited text files with one row per stock and we captured data elements such as the
stock ticker, current price, price change, volume, last trade time, bid price, ask price, and the
date’s range. For the purposes of this analysis, we mostly used the current price and the price
change.

http://www.tweepy.org/
http://rjcl-tweets.s3.amazonaws.com/

A listing of the files that were generated through this process can be found at -
http://rjcl-stockquotes.s3.amazonaws.com/

Annual Report (10-K) and Company Data

Python script

Text files written
to 53 with HTML
cleaned

Figure 3: Annual Report (10-K) Data

We started with the Wikipedia list of the S&P 500 companies. This list includes the ticker
symbol, security name, links to SEC filings over in EDGAR at the Securities Exchange
Commission, the Global Industry Classification Standard (GICS) Sector and Sub Industry,
Headquarters Address, Date First Added, and the Central Index Key (CIK). Unfortunately, due
to the way the SEC website is set up, it was a manual process to collect each of the annual
report (10-K) files for each company in the S&P 500. File names and CEO information were
appended to this data. No 10-Ks were available in the EDGAR database for Navient Corp
(NAVI) or Perrigo (PRGO). SEC files are available in XBRL format or HTML format. Since not
all data is required to be filed in the XBRL format, we opted to use the complete submission text
file. The text files contain HTML and in some cases binary data which had to be cleaned. In
order to clean the data, a python script was written that employed the BeautifulSoup package to
strip off the HTML. Originally, we were going to convert the files to JSON, but found it would be
more work than just cleaning the text files.

The files were run through BeautifulSoup twice to get them mostly clean. Once the files were
cleaned by the script, they were FTPed to an S3 bucket over at AWS,
http://10k-clean-data.s3.amazon.com.

http://rjcl-stockquotes.s3.amazonaws.com/
http://en.wikipedia.org/wiki/List_of_S%26P_500_companies
http://www.sec.gov/edgar.shtml#.U_Kk77xdUhs
http://www.sec.gov/edgar/searchedgar/companysearch.html
http://www.sec.gov/edgar/searchedgar/companysearch.html
http://en.wikipedia.org/wiki/Global_Industry_Classification_Standard
http://www.sec.gov/edgar/searchedgar/cik.htm#.U_KkybxdUhs
http://www.crummy.com/software/BeautifulSoup/
http://10k-clean-data.s3.amazon.com/

With the cleaned documents ready, we needed a place to store them. We installed Apache Solr
on an Amazon EC2 instance, using a freely available public AMI from Bitnami. The Solr
instance was configured to treat the various meta data elements (CIK, ticker symbol, etc.) and
the full 10-K document text as separate facets. In the beginning, we considered incorporating
the different facets in our search and relevance scoring strategy. This excerpt from the
schema.xml configuration file shows the definitions for the various facets:

Figure 4: schema.xml Excerpt for Facet Definitions

<field name=" version " type="long" indexed="true" stored="true"/>
<field name="cik" type="text general" indexed="true" stored="true"/>

<field name="ticker symbol" type="text general" indexed="true" stored="true"/>

<field name="company name" type="text general" indexed="true" stored="true"/>

<field name="sector" type="text general" indexed="true" stored="true"/>

<field name="sub_ industry" type="text general" indexed="true" stored="true"/>

<field name="address" type="text general" indexed="true" stored="true"/>

<field name="date first added" type="text general" indexed="true"
stored="true"/>

<field name="html file name" type="text general" indexed="true" stored="true"/>

<field name="xbrl file name" type="text general" indexed="true" stored="true"/>

<field name="ceo name" type="text general" indexed="true" stored="true"/>

<field name="ten k text" type="text general" indexed="true" stored="true"/>

<uniqueKey>cik</uniqueKey>

With the facets established, we wrote a Python ingestion script that used the solrpy library to
communicate with the Solr API to post documents to the collection.

Figure 5: Excerpt of Python ingestion script for posting documents to the collection

ten k url 'http://10k-clean-data.s3.amazonaws.com/' + item['html file name']
ten k url = ten k url.replace(".txt", "-clean.txt")
print ten k url
try:
response = urllib2.urlopen(ten k url)
except Exception, e:

print "ERROR: Failed to retrieve 10-K document for " +

item['company name'] + " (" + ten k url + ")"
continue
html = response.read()

soup = BeautifulSoup (html)

item['ten k text'] = ''.join(soup.findAll (text=True)) .strip()
item['ten k text'] = item['ten k text'].replace("\0", " ")
item['ten k text'] = '"'.join(s for s in item['ten k text'] if s in

string.printable)

try:
s.add (item)
s.commit ()
except Exception, e:
print "ERROR: Failed on add document to Solr for " + item['company name']
continue

During our exploration of different search strategies, we tried assigning different weights for the
search facets using Solr’s relevance score boosting settings. The excerpt below, from our
solrconfig.xml configuration file, shows some of the boosting settings we tried during these
tests. In this iteration, we gave the highest weight to facets that were most likely to be unique
identifiers for a company (CIK, ticker symbol, and company name).

Figure 6: solrconfig.xml Excerpt for Relevance Score Boosting

<requestHandler name="/query" class="solr.SearchHandler">
<lst name="defaults">

<str name="echoParams">explicit</str>

<str name="wt">json</str>

<str name="indent">true</str>

<str name="defType">edismax</str>

<str name="qgf">
cik”5.0 ticker symbol”5.0 company name”5.0 sector”0.3 sub industry”0.5
address”0.2 date first added”0.01 html file name”0.1 xbrl file name”0.1

ceo name”3.0 ten k text”3.0

</str>
<str name="df">ten k text</str>
</lst>
</requestHandler>

Unfortunately, tweets are not easily parsed into these types of facets. While we might have
employed a complicated query syntax to test each tweet against all possible facets, the
ten_k_text field already contained all of the same information that was present in the other
facets. The information was held within a much larger body of text, but the test searches that we
tried returned appropriate results when searching for things such as CEO names.

We then began testing actual tweets as queries. Solr initially treated our queries as stricter “and”
searches, requiring the presence of all search terms. As a result, most of the test Tweets we
tried as queries returned no results. We adjusted our code to produce “or” queries (as shown
below), with much better results.

ten k text:diet OR ten k text:coke OR ten k text:right OR ten k text:meow

In the proof-of-concept phase, we used a t2.micro sized EC2 instance because they were
available to run at no cost. Java consistently ran out of memory on these instances after a few
searches, and it was clear that they would not keep up with our planned query volume. We
migrated the collection to an m3./arge instance, allocated substantially more memory to the
Java runtime, and tested with an Elastic MapReduce cluster of 10 machines. Once we verified
that Solr's performance was satisfactory, we extended to 20 machines for the remainder of the
MapReduce processing.

Our Solr document collection is available for simple browsing and searching. Our primary goal
was to produce good quality search results with appropriate relevance scores, so many of the
user interface options may not work as expected. However, the search query handling and
relevance scoring are the same as those used in our final iteration of the project. Source code
for our query testing Python script is also available in our project Github repository
(sectenk_query.py).

ma3.large instance:
http://ec2-54-187-252-24.us-west-2.compute.amazonaws.com:8983/solr/sectenk/browse

t2.micro instance:
http://ec2-54-186-141-116.us-west-2.compute.amazonaws.com:8983/solr/sectenk/browse

Evaluating and Visualizing Results

Once all of our data was collected, we made a conscious decision to limit our analysis to one
week of data, the week of August 4th (0000 GMT) through August 8th (0000 GMT). The final
dataset for analysis consisted of a CSV file with the eight columns defined below:

Datetime - this was every 10-minute interval in a YYYY-MM-DD HH24:MI:SS format

Ticker - the company stock ticker symbol

Stock Price - the stock price at the given time interval

Price Shift - the actual price shift after the 10-minute interval

Tweet Shift - the estimated shock shift as a calculation of tweet relevance to the given

company and the sentiment score of the given tweet

6. Tweet Volume - the volume of tweets relevant to the company within the 10-minute
interval

7. Text of Most Relevant Tweet - the text of the tweet with the highest relevant score for the
company within the 10-minute interval

8. Score of the Most Relevant Tweet - the relevant-sentiment combination score of the

most impactful tweet within the 10-minute interval

ok wbd =~

http://ec2-54-187-252-24.us-west-2.compute.amazonaws.com:8983/solr/sectenk/browse
http://ec2-54-186-141-116.us-west-2.compute.amazonaws.com:8983/solr/sectenk/browse

We performed our exploratory and statistical analysis in Tableau and R. During the week of
August 4th, here are the top 10 S&P 500 stocks that were Tweeted about per our Solr search
algorithm.

Table 2: Top 10 S&P 500 Stocks Tweeted

Ticker Tweet Volume
PPL 3733
SIM 1497
T 1018
GME 855
TSN 789
VAR 609
EA 606
TWX 603
CCL 550
MAT 547

Companies with the Most Tweet Volume

Ticker
P corp e [
smucker (2. M. (sv)
aTaT inc (1) [
GameStop Corp. (GME) [[NNNEGEEEEE
Tysen Foeds (TSN) [NNENENGEEN
Varian Medical Systems (VA.. _
Electronic Arts (EA) [NG
Time Warner Inc. (TWX) _
carnival Corp (CCL) [NG
Mattel inc. (MAT) [NENENEN

0 500 1000 1500 2000 2500 3000 3500

Figure 7: Top 10 S&P 500 Stocks Tweeted

10

We also took a look at the top 10 tweets with the highest relevancy scores to the companies in

our database and they all matched against SJM which is the JM Smuckers Jam Company. All of

these tweets had the word ‘empty’ in them signifying that ‘empty’ was a major part of the
Smuckers 10-K report. Here are a listing of the top 10 tweets in our dataset.

Table 3: Top 10 Tweets

Company Datetime (GMT) Tweet Text Relevance Score
SJM 8/4/2014 1:00 AM Empty . 1.5580
SJM 8/4/2014 7:40 AM empty 1.5580
SJM 8/5/2014 5:20 AM EMPTY !:)) 1.5580
SJM 8/5/2014 7:00 AM (Empty) 1.5580
SIM 8/6/2014 7:40 AM empty. 1.5580
SIM 8/6/2014 8:50 PM Empty 1.5580
SJM 8/7/2014 2:20 PM Empty me 1.5580
SJM 8/5/2014 3:20 AM And empty 1.5458
SJM 8/5/2014 4:20 PM So empty. 1.5209
SJM 8/6/2014 5:50 AM So empty 1.5209

In addition to these top 10 charts, we looked at some summary statistics of the relevancy and
tweet shift scores. Recall, the tweet shift score is a score that combines the relevancy of the
tweet to a given company and the sentiment score of a given tweet.

Table 4: Summary Statistics for Tweet Shift

Min

1st Qtl

Median

Mean

3rd Qtl

Max

10

A1

A3

19

19

2.74

First thing to note here is that the tweet shift is never negative. We found that our sentiment
algorithm never generated enough negative tweets to ever let a 10-minute interval of tweet
scores go below zero. Next, we sought to correlate tweet shifts with actual price shifts in the
market on a 10-minute interval. When running the correlation test, we actually get a
non-significant p-value (p= .81) indicating that we cannot reject the null hypothesis that the
correlation is indeed zero. The correlation coefficient we get is r = .0028 which has very little

practical significance. This result is supported by the graph below showing no real relationship
between our tweet shift metric and actual price changes in the market.

Tweet Shift vs Price Shift

*

Tweet Shift

F'ric;-} :Shiﬂ
Figure 8: Tweet Shift vs Price Shift

After looking at the data at the 10-minute interval level, we decide to roll up the price changes
and the predicted tweet changes at the hour-level to see if reducing the noise would produce a
stronger correlation. However, we found that the results were equally scattered if not more.

12

Tweet Shift vs Price Shift by Day and Hour

Tweet Shift

Price Shift

Figure 9: Tweet Shift vs Price Shift by Day and Hour

The hour-level continued to produce a non-significant correlation coefficient of r = .02. Finally,
we decided to pull up at the day-level but to look at each stock on each day separately. The
results from this analysis were similar actually to the results from the first analysis at the
10-minute interval level. This relationship produced a correlation coefficient of r=-0.014 (see
graph directly below). The final relationship we tested before manipulating any data was at the
overall day-level with all stocks rolled up. Here, since we only had 5 days of quotes data, we
were really only working with 5 data points so the correlation we achieved is really meaningless
with this small of a sample size. Regardless, the overall day-level numbers produced a
significant correlation with r = -.895. This means that, at the day-level, the more positive tweets
are about S&P 500 companies, the worse they will do on that given day.

13

Tweet Shift vs Price Shift at Day Level

Tweet Shift

Price Shift
Figure 10: Tweet Shift vs Price Shift at Day/Stock Level

The last thing we decided to check was whether we could find a relationship in the data at the
10-minute interval level if we did a 10-minute time shift. That is, we correlated stock price shifts
10 minutes after the tweet shifts. Here we were trying to test if there was a lag in the time it took
for the stock market to react to mentions in the Twitter stream.

14

Tweet Shift vs Price Shift w/ 10 min shift

Tuweet Shift

. - .,
- - -

* s »* o':t:-l."l" L e R . .

1 1 1

Price Shift (after 10 minutes)

Figure 11: Tweet Shift vs Price Shift with 10 Minute Time Shift

The above graph, again, shows no real correlation even with this time shift (r=-0.12, p = .34)
So, in sum, we did not find any real relationships between stock price changes and the Twitter
predictions we generated through a combination of sentiment scoring and company relevance
scoring for the S&P 500. There is some promise at the day-level of showing a meaningful

negative correlation but we need to collect a lot more data to determine if we can conclude
anything from that.

We eliminated the data for WDC, ACT, AXP, NWSA, GMCR, EL, and EIX from our analysis as
we noticed that these particular files contained stray > HTML entities, which were being
picked up as positive sentiment even though they were truly just HTML code.

15

Tweet Volume vs Sentiment/Relevance 8/4/14 - 8/9/14

: Ticker
55-2-.4 [l FFL Comp (PPL)
Il smucker (J. M.} (SJM)
500 B AT&T Inc(T)
GamesStop Corp. (GME)

600

e
8 Tyson Foods (TSM)
(73] O 3 .
o 400 4111 Varian Medical Systems (VAR)
= . d
2 | Electronic Arts (EA)
[
= Time Warner Inc. (TWX)
= 300
E [l camival Corp (CCL)
E Il Mmattel inc. (MAT)
E
£ 200
(73]
(1388
122.2
100
ED 982
i]
] 500 1000 1500 2000 2500 3000 3500

Tweet Volume

Figure 12: Tweet Volume vs Sentiment/Relevance

Above are the top 10 most tweeted companies and the sum of their sentiment/relevance score.
PPL Corp (PPL) and Smucker (SJM) stand out as being markedly higher in their cumulative
sentiment/relevance score. Upon further investigation when looking at the text of the tweets, we
got false positives on PPL since some people use “ppl” as a text abbreviation for people. In the
case of Smuckers, they had the word “empty” repeatedly throughout their HTML code in their
style sheet comments, thus again, another false positive.

16

Figure 13: 10 Most Positive Price Shifts

s 4 " Ticker
10 Most Positive Price Shifts Bing:com bic BN

B Netfiix Inc. (NFLX)
Regenercn (REGN)
B AutoZone Inc (AZO)
. Graham Holdings Company (GHC)
B Mohawk Industries (MHK)
. Amazon.com Inc (AMZN)
Fossil, Inc (FOSL)
PWVH Corp. (PVH)
B Polo Ralph Lauren Corp. (RL)

20

Price Shift

Aug 5 Aug B Aug 7 Aug 8 Aug 8
Minute of UTC Timestamp [August 2014]

10 Most Negative Price Shifts

Ticker
' e P — - e . Discovery Communications (DISCA)
%‘ —) - B Actavis pic (ACT)
10 Walgreen Co. (WAG)

Time Wamer Inc. (TWX)
B Allergan Inc (AGN)
Wynn Resorts Ltd (WYNN)
Chipotle Mexican Grill (CMG)
B intuitive Surgical Inc. (ISRG)
B Keurig Green Mountain (GMCR)
40 . Pioneer Natural Resources (PXD)

=20

Price Shift

=30

Aug 5 Aug & Aug 7 Aug B Aug 8
Minute of UTC Timestamp [August 2014]

Figure 14: 10 Most Negative Price Shifts

We examined the top 10 stocks with the greatest positive and negative price shifts (these were
not converted to percentage of stock price to see relative stock price shifts) and found that
Priceline.com had the largest positive price shift. Reviewing the news and press releases
surround Priceline.com on August 5th, we found that Priceline.com released Q2 earnings
results on August 8th and saw a spike early in the week due to increased August volatility in the
S&P 500 in general as well as outlook on earnings. Discovery Communications, Inc. (DISCA)
released their financials online to the SEC on August 8th. Although Bernie Ecclestone settled
with a Munich court by writing a $100 million check in return for ending his alleged bribery to
maintain control of Formula One trial midweek, Discovery Communications was looking to buy
out private equity group CVC’s shares in Formula One (a 49% stake). This large investment
and negative press may have pulled down the price of Discovery Communications. In addition,
Time Warner plunged on August 6th which may also have dragged the price of Discovery
Communications down and often there is price volatility prior to an earnings release.

17

Figure 15: Priceline.com (PCLN) Price Shifts and Corresponding Sentiment/Relevance Score
Shifts Over the Week of August 4 - 9, 2014

UTC Timestam,
Priceline.com Inc (PCLN) S
Q3
August
4 5 [7]
2 4 7 8B 14 17 18 21 0 1 4 |8 13 15|21 22 23 0 1 2.7 12 14 15 17 |18 19 21 | 3 4 13 15 16 19|21 1 11 12 14 (16 17
4.050 4,271

0.31
o 0.00:0.00:0.0010.00 0.000.000 0.000.00:0.000.00 0.000.000.00¢ 0.000 0.000.000.000.000 0.000 0.000 0.00:0.00:0.00¢ b 0.000.000.000 0.00¢ 0.0010.000
0.000 0.000 0.000 0.000 0.000 -U:ﬂ -0.500 0.000

-0.9¢-0.8¢
|

Price Shift

-1.890
-2.7C
.

0.3751

0.35
0.30

025 i

0.18 01738

ant and Relevance Score
o
a

0.15 . ! 013 ' 0.43
013 .0-13 b 0,120'.'3 n,:30_13 1
-

012

Sentim
.

04123 011 011 011
010 e D0 0.100:11 . 0.0 ® 0.1089 010 0.10¢ 0.100p 10/
® 0100 — e 01217 0-100-13 Pl 0.10: Urlll - - 0-."1 e 010127, Ml 0.10190.10 -

-
i = o065 0.10520,1029 0.1029 0.1004 01018

0|20 10| 0 30 20 40 50 20 10 40 20|10 40 20 30 40 50 O 10 20 40 40 50 40 20 40 30 10 30 50 |40 0 |20 0 40 10 50 20 50 |50 0 |20 30 50 50 10 50

When looking at Priceline.com’s price shifts and corresponding tweet sentiment/relevance, we
see that there does not appear to be any correlated pattern between the two.

18

Lessons Learned and Recommendations for Future Work

Number of tweets captured were a small part of the Twitterverse: the theory that we
were testing was that you don’t need a model if you have all of the data, but we didn’t
have all of the data. In the absence of a connection to the full Twitter Firehose, we
believe that target Tweet searches based on sender, content, and other metadata would
produce better results.

Sentiment package used did not produce reliable scores: it was observed that the
package produced significantly more positive sentiment results than negative sentiment
results. It is possible that there are in fact significantly more positive Tweets than
negative Tweets, but a sampling revealed that some Tweets that were graded as
positive in fact seemed negative. Furthermore, the few negative Tweets that existed
seemed much less likely to result in matches against the Solr 10k IR system, resulting in
low relevance and subsequent filtering.

Solr relevance scores did not always make intuitive sense: for example, searching for
Big Mac yielded McDonald’s as the third most relevant company with a relevance score
that was <1% of the relevance score of the top relevant company, Macerich. While
explainable by Macerich’s ticker symbol (MAC), this does reveal a flaw in the method.
Markets open 9:30 AM - 4 PM ET, but people tweet 24 hours a day: this results in an
inability to reliably test correlations below the day level. One better way to capture
correlations would be to perhaps include Asian market data.

Due to time and processing constraints, we only have one week of stock quote data
processed. Perhaps trends would become more apparent over a longer period of data.
Idiosyncrasies in the Twitterverse sometimes produce unexpected results: for example,
a large number of Tweets abbreviated “people “ as “ppl” resulting in false relevance to
PPL Corp.

19

Appendix A: Source code

The following code is available at https://github.com/jmorales4/\WW205-RJCL-Public

Phase 1: Data Collection

twitterStream.py
Connect to the Twitter Stream API using Tweepy, create 1000 tweet files, and store in
Amazon S3 using Boto
get_stock_quotes.pl
Perl Script that reads Stock Quotes from Yahoo Finance API and writes them to AWS S3
every 10 minutes
clean-secdata-bs4.py
Python script that uses BeautifulSoup to clean HTML from SEC 10K files
sectenk_ingest.py
Retrieve SEC 10k files from S3 and import into Solr

Phase 2: Map Reduce

mapStockPrices.py
Map file used by Hadoop: input = stock quote file, output key = time rounded down to
nearest 10 minutes, output val = csv of ticker|price pairs

redStockPrices.py
Reduce file used by Hadoop: input = stock prices as ticker|price pairs, keyed by time,
output = time, ticker, value csv lines

map Tweets.py
Map file used by Hadoop: input = tweet files containing 1000 tweets
- score sentiment. Tweets with neutral sentiment are discarded (abs(sent) < 0.25)
- score relevance against the 10k Solr system. Discard low hits (relevance < 0.1)
- calculate the tweetShift score for each relevant ticker = sentiment * relevant
output key = time, output val = csv of tweet + ticker|tweetShift pairs

redTweets.py
Reduce file used by Hadoop: input = ticker|score pairs, keyed by time (10 minute
periods),
output = time, ticker, aggregated sum of tweetShift, aggregated count of Tweets, and
the text and tweetShift of the most significant Tweet for the period

20

https://github.com/jmorales4/W205-RJCL-Public

Phase 3: Dataset Construction

tenMinutePrices.py
Read Hadoop StockPrices output and produce individual csv files for each Ticker/10
minute period containing time, ticker, and price
priceShift.py
Read in individual csv files containing price data and calculate the priceShift by
comparing the price to the previous price. Also and fill in missing points (e.g. when
markets were closed) by copying previous points.
tweetShift.py
Read Hadoop Tweets output and apply tweetShift to existing priceShift files.
makeOneFile.py
Gather up all the individual files produced above and combine them into a single csv file.

Phase 4: Analysis

analysis_final.R
Correlate stock price changes with predictions from Twitter

21

! /usr/local/bin/python

#

twitterStream.py: Connect to the Twitter Stream API using Tweepy,
create 1000 tweet files, and store in Amazon S3 using Boto

#

from tweepy.streaming import StreamListener
from twitterCredentials import *

from awsCredentials import *

from time import gmtime, strftime

from boto.s3.connection import S3Connection
from boto.s3.key import Key

import sys

import os

class TwitterStream(StreamListener):
file = None
count=0
s3 = None

def __init_ (self):
StreamListener.__init__(self)
self.s3 = S3Connection(aws_access_key, aws_secret_key)
self.start_new_tweet_file()

def start_new_tweet_file(self):
old_file = self.file

filename = strftime("%Y%m%d%H%M%S.tweets", gmtime())
self.file = open(filename, "w")
self.count =0

print filename

if old_file is not None:
old_file.close()
self.post_to_s3(old_file.name)

def on_data(self, data):
try:
self file.write(data[:-1])
self.count +=1
if self.count >= 1000:
self.start_new_tweet_file()
return True

except Exception, e:
pass

22

def post_to_s3(self, filename):
bucket = self.s3.get_bucket('rjcl-tweets")
entry = Key(bucket)
entry.key = filename
b = entry.set_contents_from_filename(filename)
print "{}: wrote {} bytes to s3".format(filename, b)
os.remove(filename)

if _name__ =='_main__"
print "Startup”
while True:
try:
stream1 = tweepy.Stream(auth, TwitterStream())
stream1.sample()
except:
print "Unexpected error:", sys.exc_info()[0]

print "Shutdown"

23

#

get _stock_quotes.pl: Perl Script that reads Stock Quotes from Yahoo Finance API and writes them to AWS S3
every

10 minutes

#

use Finance::YahooQuote;

use Amazon::S3;

use strict;

Global params
$Finance::YahooQuote:: TIMEOUT = 60;
my $aws_access_key id =";

my $aws_secret_access_key = ";

Open S3 connection
my $s3 = Amazon::S3->new(

{
aws_access_key id => $aws_access_key id,
aws_secret_access_key => $aws_secret_access_key,
retry =1,

}

)
my $bucket = $s3->bucket('rjcl-stockquotes’);

read in stock ticker symbols of interest
open INPUT, "stock_tickers.txt";
my @tickers;
foreach (<INPUT>)
{
chomp($.);
push(@tickers,$_);

close INPUT;

while(1)
{
my $date_string = get_date_string();
my $filename = "stock_quotes_".$date_string.".txt";
my $filepath = "//home//ubuntul//rjcl_stockquotes//$filename";
open OUTPUT, "> $filepath";
print OUTPUT "0 Symbol|1 Company Name|2 Last Price|3 Last Trade Date|4 Last Trade Time|5
Change",
"|6 Percent Change|7 Volume|8 Average Daily Vol|9 Bid|10 Ask|11 Previous Close|12 Today's Open",
"|13 Day's Range|14 52-Week Range|15 Earnings per Share|16 P/E Ratio|17 Dividend Pay Date",
"|18 Dividend per Share|19 Dividend Yield|20 Market Capitalization|21 Stock Exchange\n";
foreach my $symbol (@tickers)
{
my @quote = getonequote $symbol; # Get a quote for a single symbol
print OUTPUT join("|",@quote),"\n";

24

}
close OUTPUT;

$bucket->add_key_filename(
$filename, $filename,
{ content_type => "text/plain'}
);

sleep 600;

exit();

sub get_date_string
{
my @date = localtime;
my $day = $date[3];
my $month = $date[4]+1;
my $year = $date[5]+1900;
my $hour = $date[2];
my $min = $date[1];
my $sec = $date[0];
$day = "0".$day if(length($day) == 1);
$month = "0".$month if(length($month) == 1);
$hour = "0".$hour if(length($hour) == 1);
$min = "0".$min if(length($min) == 1);
$sec = "0".$sec if(length($sec) == 1);
my $date_string = $year.$month.$day.$Shour.$min.$sec;

return $date_string;

25

#! /usr/local/bin/python

__author__ ="lkirch’

#

clean-secdata-bs4.py: Python script that uses BeautifulSoup to clean HTML from SEC 10K files
#

import codecs
import os

inputDir = 'data/’
outputDir ="../clean/’

from bs4 import BeautifulSoup, Tag

Vasilis http://stackoverflow.com/questions/753052/strip-html-from-strings-in-python
def stripHtmITags(self, htmITxt):
if htmITxt is None:
return None
else:
return ' ".join(BeautifulSoup(htmITxt).findAll(text=True))

if _name__=='_main__"
for root, dirs, files in os.walk(‘/Users/lkirch/PycharmProjects/convertSECdatatoJSON/data/'):
for name in files:
print("Processing Input File: " + name)
outputFile = name.rstrip(".txt') + '-clean.txt'
print("Output File Will Be: " + outputFile)
with codecs.open('data/' + name, 'r', encoding="utf-8') as sec_file, \
codecs.open(‘clean/' + outputFile, 'w+', encoding="utf-8') as clean_file:
clean_data = stripHtmITags(sec_file, sec_file)
clean_data2 = stripHtmITags(clean_data, clean_data)
clean_file.write(clean_data2)

26

#
sectenk_ingest.py: Retrieve SEC 10k files from S3 and import into Solr
#

import solr

import simplejson

from BeautifulSoup import BeautifulSoup
import urllib2

import string

def clean_strip(item):
item['cik’] = str(item['cik'])

for key in item:
item[key] = unicode(item[key]).strip()
item[key] = ".join(s for s in item[key] if s in string.printable)

return item

Start by wiping the existing document catalog in Solr
urllib2.urlopen(

‘http:/lec2-54-186-141-116.us-west-2.compute.amazonaws.com:8983/solr/sectenk/update ?stream.body=<delet
e><query>*:*</query></delete>")
urllib2.urlopen(

‘http:/lec2-54-186-141-116.us-west-2.compute.amazonaws.com:8983/solr/sectenk/update ?stream.body=<com
mit/>")

Create a connection to a solr server
s = solr.Solr('http://lec2-54-186-141-116.us-west-2.compute.amazonaws.com:8983/solr/sectenk’)

f = open(‘companies.json’, 'r")
json_data = simplejson.loads(f.read())
f.close

counter =0
for item in json_data:
print ‘Importing: ' + item['company_name']

item = clean_strip(item)

counter += 1

Grab 10-K from Lisa's S3 bucket
ten_k_url = 'http://10k-clean-data.s3.amazonaws.com/' + item['html_file_name’]
ten_k_url = ten_k_url.replace(".txt", "-clean.txt")

27

print ten_k_url

try:
response = urllib2.urlopen(ten_k_url)

except Exception, e:
print "ERROR: Failed to retrieve 10-K document for " + item[‘company_name'] + "(" + ten_k_url + ")"
continue

html = response.read()

soup = BeautifulSoup(html)

item['ten_k_text'] = ".join(soup.findAll(text=True)).strip()

item['ten_k_text'] = item['ten_k_text'].replace("\0", " ")

item['ten_k_text'] = ".join(s for s in item['ten_k_text'"] if s in string.printable)

try:
s.add(item)
s.commit()
except Exception, e:
print "ERROR: Failed on add document to Solr for " + item['‘company_name"']
continue

28

#l/usr/bin/env python

#

mapStockPrices.py: Map file used by Hadoop

input = stock quote file

output key = time rounded down to nearest 10 minutes
output val = csv of ticker|price pairs

#

import sys

from datetime import datetime, timedelta

prices = {}

input = sys.stdin
for line in input:
try:
StockQuote schema and sample line
#
0 Symbol|1 Company Name|2 Last Price|3 Last Trade Date|4 Last Trade Time|5 Change|6 Percent Change)|

A|Agilent Technolog|56.07|8/1/2014]|4:04pm|-0.02|-0.04%| 1601356|1808860|N/A|N/A|56.09]55.77] ...

line = line.strip()
words = line.split("|")
if len(words) < 5: continue # not enough data in this line, ignore

ticker = words|[0]
if ticker == '0 Symbol': continue # header row

price = words[2]

t = datetime.strptime(words[3] + ' ' + words[4], 'Y%om/%d/%Y %Il:%M%p")
nearest10Minutes = (t.minute / 10) * 10 # fime rounded down to nearest 10 minutes
t = t.replace(minute=nearest10Minutes) + timedelta(hours=4)

trade_time = t.strftime('%Y-%m-%d %H:%M")

if not trade_time in prices:
prices[trade_time] =[]

Build up a price list of ticker|price pairs for all stocks for each 10 minute period
priceList = prices[trade_time]
priceList.append(ticker + ‘| + price);

except:
continue

Emit the price lists: key = time val = csv of ticker|price pairs
for trade_time in prices:

pricelList = prices[trade_time]

print '%s\t%s" % (trade_time, '," join(priceList))

29

#!/usr/bin/env python

#

redStockPrices.py: Reduce file used by Hadoop

Input: stock prices as ticker|price pairs, keyed by time
Output: time, ticker, value csv lines

#

import sys

from datetime import datetime

prices={}
current_time =";

def output():
for ticker in prices:

try:

print '%s,%s,%s" % (current_time, ticker, prices[ticker])

except:
continue

input = sys.stdin

for line in input:
try:
keyVal1 = line.strip().split("\t")
time = keyVal1[0]
vals = keyVal1[1].strip().split(’,")

Since the keys are ordered, if we get a new time, can output the old time period

if time != current_time:
output()
current_time = time
prices = {}

Build a map with stock tickers and prices for output

for entry in vals:
keyVal2 = entry.split('|")
ticker = keyVal2[0]
price = keyVal2[1]
priceslticker] = price

except:
continue

Output the last time period
output()

30

#l/usr/bin/env python

#

mapTweets.py: Map file used by Hadoop

#

1. input = tweet files containing 1000 tweets

2. Score sentiment. Tweets with neutral sentiment are discarded (abs(sent) < 0.25)
3. Score relevance against the 10k SOLR IR system. Results with low relevance are discarded (relevance < 0.1)
4. Calculate the score for each relevant ticker = sentiment * relevant

5. Output

key = time

val = csv containing tweet + ticker|score for each relevant ticker

import sys

import json

from datetime import datetime, timedelta

import re

import math

import solr

input = sys.stdin

Solr connection for 10k IR system
s = solr.SolrConnection('http://ec2-54-187-252-24.us-west-2.compute.amazonaws.com:8983/solr/sectenk’)

These stopwords are removed from the IR query
stopwords = ["@", "a", "about", "above", "after

REDACTED

, "again", "against", "al am”, "an", "and", "any", "...

Word values used for sentiment analysis
sentiment = {

":)": [-1.975183, -23.69606],

"...": [-4.50578, -5.13896],

REDACTED

Sentiment Analysis courtesy Alex Davies http://alexdavies.net/twitter-emoticon-meanings/
Used with permission
def classifySentiment(words):

Get the log-probability of each word under each sentiment

tweetSentiment = [sentiment[word] for word in words if word in sentiment]

Sum all the log-probabilities for each sentiment to get a log-probability for the whole tweet
tweet_happy_log_prob =0
tweet_sad_log_prob =0
for probs in tweetSentiment:
tweet_happy_log_prob += probs|[0]
tweet_sad_log_prob += probs[1]

Calculate the probability of the tweet belonging to each sentiment

prob_happy = 1.0 / (math.exp(tweet_sad_log_prob - tweet_happy_log_prob) + 1)
return (prob_happy - 0.5) *2 # 0to 1.0 => Happy, -1.0 to 0 => Sad

31

for line in input:
try:
line = line.strip()
tweet = json.loads(line)

Skip non-tweets or those not in English
if 'delete’ in tweet: continue

if not 'created_at' in tweet: continue

if tweet['lang'] != "en’: continue

Get the text and split out words with regex
text = tweet['text']
words = re.findall(r"[\w']+", text)

Get Sentiment and skip neutral tweets
tweetSentiment = classifySentiment(words)
if abs(tweetSentiment) < 0.25: continue #

Get time to nearest 10 minutes

t = datetime.strptime(tweet['created_at'], '%a %b %d %H:%M:%S +0000 %Y")
nearest10Minutes = (t.minute / 10) * 10; # Round down to nearest 10 minutes
t = t.replace(minute=nearest10Minutes, second=0)

tweet_time = t.strftime('%Y-%m-%d %H:%M")

Query Solr for relevance
words = [word for word in words if word not in stopwords]
query = "+"join(words)
response = s.query(‘ten_k_text:' + query, 'ticker_symbol,score')
scores =[]
for hit in response.results:

score = hit['score’]

if float(score) > 0.1:

scores.append('%s|%0.4f" % (hit['ticker_symbol’], score))

Emit key = time, value = csv(tweet_text + list of ticker|tweetShift pairs)
if len(scores) > 0:
score_list =",".join(scores)
tweet_text = text.replace(’,’, ' *).replace("\n’,
'") # Remove commas and newlines from tweet_text so it doesn't break csv

print '%s\t%s,%s" % (tweet_time, tweet_text, score_list)
except Exception as e:

print >> sys.stderr, e
continue

32

#l/usr/bin/env python

#

redTweets.py: Reduce file used by Hadoop

Input: stock sentiments as ticker|sentiment pairs, keyed by time (10 minute periods)

Output: time, ticker, aggregated sun of tweetShift, aggregated count of Tweets, and the text and score of the most
significant Tweet for the period

import sys

from datetime import datetime

data={}
current_time =";

class Entry:
def __init_ (self):
self.sum = 0.0
self.count =0
self.hi_tweet ="
self.hi_score = 0.0

def update(self, tweet, score):
self.sum += score
self.count += 1
if abs(score) > abs(self.hi_score):
self.hi_tweet = tweet
self.hi_score = score

def output():
for ticker in data:

try:
entry = data[ticker]
print '%s,%s,%0.4f,%d,%s,%0.4f' % (current_time, ticker, entry.sum, entry.count,

entry.hi_tweet, entry.hi_score)

except:

continue

input = sys.stdin

for line in input:
try:
keyVal1 = line.strip().split("\t")
time = keyVal1[0]
vals = keyVal1[1].strip().split(’,")

Keys are in order so a new time means we can output the old time period
if time != current_time:

output()

current_time = time

data = {}

33

Current tweet
tweet = vals[0]

Aggregate each ticker
for entry in vals[1:]:
keyVal2 = entry.split('|")
ticker = keyVal2[0]
score = float(keyVal2[1])
if not ticker in data:
datalticker] = Entry()

entry = data[ticker]
entry.update(tweet, score)

except Exception as e:
print >> sys.stderr, e
continue

Output the last time period
output()

34

#!/usr/bin/env python

#

tenMinutePrices.py: Read in Hadoop price output and produce individual csv files for each Ticker/10
minute period containing time, ticker, and price

#

import sys

from datetime import datetime

time_format = '%Y-%m-%d %H:%M’
start = datetime(2014, 8, 4)
finish = datetime(2014, 8, 9)

input = sys.stdin
if len(sys.argv) > 1:
input = open(sys.argv[1], 'r")

for line in input:
try:
vals = line.strip().strip().split(",")
time = vals[0]
ticker = vals[1]
price = vals[2]

t = datetime.strptime(time, time_format)
if t < start or t > finish: continue # Skip
flename = 'D:\\TenMinute\\' + ticker + *_' + time.replace(" ', '_'
with open(filename, 'w') as f:
f.write('%s,%s,%s" % (time, ticker, price))

).replace(':", ") + ".twp'

except Exception as e:
print >> sys.stderr, e
continue

35

#!/usr/bin/env python

#

priceShift.py: Read in individual csv files containing price data and caluculate the priceShift

by comparing the price to the previous price. Also and fill in missing points by copying previous points.
#

import sys

from datetime import datetime, timedelta

from os import listdir

time_format = "%Y-%m-%d %H:%M'
tenMinutes = timedelta(minutes=10)
dir = 'D:\TenMinute\\'

start = datetime(2014, 8, 4)

finish = datetime(2014, 8, 9)

class FileEntry:
def __init_ (self, tm, ticker, price):
self.ticker = ticker
self.time = tm
self.price = price
self.priceShift = 0.0

@classmethod
def initFromPrevious(cls, previous):
return cls(previous.time + tenMinutes, previous.ticker, previous.price)

@classmethod
def initFromFileLine(cls, line):
vals = line.strip().split(",")
return cls(datetime.strptime(vals[0], time_format), vals[1], float(vals[2]))

Output csv files with time, ticker, price and priceShift
def writeFile(self):
filename = dir + self.ticker +*_" +\
self.time.strftime(time_format).replace(' ', *_’
with open(filename, 'w') as f:
f.write('%s,%s,%0.2f,%0.2f" % (self.time.strftime(time_format), self.ticker, self.price, self.priceShift))

).replace(':', ") + ".twp’

filenames = listdir(dir)
previous_entry = None
current_entry = None

Write files until finish time
def runOutEntry(entry):
while entry.time < finish:
entry = FileEntry.initFromPrevious(entry)
entry.writeFile()

36

for filename in filenames:
try:
with open(dir + filename, 'r') as f:
Just one line
for line in f:
current_entry = FileEntry.initFromFileLine(line)
break

If the ticker symbol changed, run out the previous ticker symbol

if previous_entry is not None and current_entry.ticker != previous_entry.ticker:
runOutEntry(previous_entry)
previous_entry = None

If there is no previous entry, calculate the previous entry from the current entry
if previous_entry is None:
previous_entry = FileEntry.initFromPrevious(current_entry)
previous_entry.time = start
previous_entry.writeFile()

Fill in any gaps

while (current_entry.time - previous_entry.time) > tenMinutes:
previous_entry = FileEntry.initFromPrevious(previous_entry)
previous_entry.writeFile()

Write current entry and move to next

current_entry.priceShift = current_entry.price - previous_entry.price
current_entry.writeFile()

previous_entry = current_entry

except Exception as e:
print >> sys.stderr, e

continue

Run out Ist entry to finish time
runOutEntry(current_entry)

37

#!/usr/bin/env python

#

tweetShift.py: apply tweetShifts to existing files of priceShifts
#

import sys

from datetime import datetime, timedelta

from os import listdir, path

import os

time_format = "%Y-%m-%d %H:%M'
outputDir = 'D:\TenMinute\\'
inputDir = "TweetResults’

class FileEntry:
Create a FileEntry from Hadoop Reduce output
def __init_ (self, fileline):
vals = fileline.strip().split(",")
self.time = vals[0]
self.ticker = vals[1]
self.tweetShift = vals[2]
self.count = vals[3]
self.tweet = vals[4]
self.score = vals[5]

Write to the end an existing file
def writeFile(self):
filename = outputDir + self.ticker +'_" + self.time.replace(' ', '_'
if os.path.isfile(filename):
with open(filename, 'a’) as f:
f.write(,%s,%s,%s,%s\n' % (self.tweetShift, self.count, self.tweet, self.score))
else:
print '!!! Missing File: ' + filename

).replace(':", ") + ".twp’

Walk the inputDir, read each line in each input file, and write to end of files in outputDir
for root, dirs, files in os.walk(inputDir, topdown=False):
for file in files:
try:
with open(os.path.join(root, file), 'r') as f:
for line in f:
entry = FileEntry(line)
entry.writeFile()

except Exception as e:

print >> sys.stderr, e
continue

38

#!/usr/bin/env python

#

makeOnecFile.py: Gather up all the individual files contained in inputDir and combine them
into a single file, filling in missing carriage returns.

#

End time is passed as cmd arg, and process ignores records after end-time

import sys
from datetime import datetime
import os

inputDir = 'D:\\TenMinute\\'

end_time = None

time_format = "%Y%m%d%H'
file_time_format = '%Y-%m-%d %H:%M'

Get the end-time
if len(sys.argv) > 1:

end_time = datetime.strptime(sys.argv[1], time_format)
else:

print 'End time required (%s)" % time_format

exit(1)

Output filename = end-time
with open(sys.argv[1] + ".twp', 'w') as output:
Walk inputDir
for root, dirs, files in os.walk(inputDir, topdown=False):
for file in files:
try:
with open(os.path.join(root, file), 'r') as input:
for line in input:
line = line.strip()
if len(line) > 0:
time = datetime.strptime(line.split(*,")[0], file_time_format)
if time >= end_time: continue # Skip this record
output.write(line + "\n")
except Exception as e:
print >> sys.stderr, str(e) + " : " + o0s.path.join(root, file)
continue

39

R e R R e R R

RJCL W205 Project

analysis_final.R: Correlating stock price changes with predictions from Twitter
#08/17/2014

SRR R e R e R e e e e e e

Set working directory

getwd();

setwd("C:/Berkeley MIDS/W205/Project/");
list.files();

library(ggplot2)
library(lubridate)

data <- read.csv("2014080900.csv",header=T)
data$dateOnly <- as.Date(data$datetime);
colnames(data)

Stocks with most Tweets

stockTweetVolume <- tapply(data$tweetVolume,data$ticker,sum,na.rm=T)
stockTweetVolume <- as.data.frame(stockTweetVolume)
stockTweetVolume$ticker <- rownames(stockTweetVolume)
rownames(stockTweetVolume) <- NULL

colnames(stockTweetVolume) <- c("tweetVolume","ticker")

head(stockTweetVolume[order(stockTweetVolume$tweetVolume,decreasing=T),],n=10)
head(stockTweetVolume[order(stock TweetVolumeS$tweetVolume),],n=100)

10 Most Relevant Tweets
head(data[order(data$mostRelevantTweetScore,decreasing=T),],n=10)
dataMinusAmp <- data[!grepl("&",data$mostRelevantTweetText),]
dataMinusAmp <- dataMinusAmp[lis.na(dataMinusAmp$mostRelevantTweetScore),]
head(dataMinusAmp[order(dataMinusAmp$mostRelevantTweetScore,decreasing=T),],n=10)
most relevant tweet with out a "&" has a score of 1.558 ...
maybe we should cap at 2? (would remove about 5000 records)

max(dataMinusAmp$mostRelevantTweetScore, na.rm=T)
summary(dataMinusAmp$mostRelevantTweetScore, na.rm = T)

sum(is.na(data$priceShift))
dataWithPriceShift <- data[data$priceShift = 0,] ### Using data with price shifts as proxy for working hours

10-minute interval data
summary(dataWithPriceShift$tweetShift)
gplot(dataWithPriceShift$priceShift,

dataWithPriceShift$tweetShift,

xlab = "Price Shift",

ylab = "Tweet Shift",

xlim = ¢(-5,5),

40

main = "Tweet Shift vs Price Shift");

cor.test(dataWithPriceShift$price Shift,dataWithPrice Shift$tweetShift);

Hourly Data

head(dataWithPriceShift)

dataWithPriceShift$datetime2 <- as.character(dataWithPriceShift$datetime)
dataWithPriceShift$datetimeClean <- as.POSIXct(dataWithPriceShift$datetime2, tz="GMT")
dataWithPriceShift <- subset(dataWithPriceShift,select = -c(datetime2))
dataWithPriceShift$hour <- hour(dataWithPriceShiftfdatetimeClean)

hourPriceShift <- aggregate(dataWithPriceShift$priceShift ~ dataWithPriceShiftsdateOnly + dataWithPriceShift$hour,
data = dataWithPriceShift,
sum)

class(hourPriceShift)

colnames(hourPriceShift) = c("dateOnly","hour","priceShift")

head(hourPriceShift)

hourTweetShift <- aggregate(dataWithPriceShift$tweetShift ~ dataWithPriceShift$dateOnly +
dataWithPriceShift$hour,
data = dataWithPriceShift,
sum)
colnames(hourTweetShift) = c("dateOnly","hour","tweetShift")
head(hourTweetShift)

hourData <- merge(hourPriceShift,hourTweetShift,by=c("dateOnly","hour"))

gplot(hourData$priceShift,
hourData$tweetShift,
xlab = "Price Shift",
ylab = "Tweet Shift",
main = "Tweet Shift vs Price Shift");

cor.test(hourData$priceShift,hourData$tweetShift);

Day-Level Data

dayPriceShift <- tapply(dataWithPriceShift$priceShift, dataWithPriceShiftsdateOnly,sum, na.rm = T)
dayPriceShift <- as.data.frame(dayPriceShift)

dayPriceShift$dateOnly <- rownames(dayPriceShift)

rownames(dayPriceShift) <- NULL

dayPriceShift

dayTweetShift <- tapply(dataWithPriceShiftStweetShift,dataWithPriceShift$dateOnly,sum, na.rm = T)
dayTweetShift <- as.data.frame(dayTweetShift)

dayTweetShift$dateOnly <- rownames(dayTweetShift)

rownames(dayTweetShift) <- NULL

dayTweetShift

41

dayData <- merge(dayPriceShift,dayTweetShift,by="dateOnly")
head(dayData)

gplot(dayData$dayPriceShift,
dayData$dayTweetShift,
xlab = "Price Shift",
ylab = "Tweet Shift",
main = "Tweet Shift vs Price Shift");

cor.test(dayData$dayPriceShift,dayData$day TweetShift);

10-minute shifted correlation
dataWithPriceShift$datetime10MinShift <- dataWithPriceShiftfdatetimeClean+600

help(merge)

colnames(dataWithPriceShift)

shiftedData <- merge(dataWithPriceShift,dataWithPriceShift,
by.x=c("datetimeClean","ticker"),
by.y = c("datetime10MinShift","ticker"))

head(shiftedData)
cor.test(shiftedData$priceShift.y, shiftedData$tweetShift.x)

gplot(shiftedData$priceShift.y,
shiftedData$tweetShift.x,
xlab = "Price Shift (after 10 min)",
ylab = "Tweet Shift",
xlim = ¢(-5,5),
main = "Tweet Shift vs Price Shift w/ 10 min shift");

42

Appendix B: Midterm Presentation

https://docs.google.com/presentation/d/1ElamIHp2KXmHDf7vNuQjchdU4BNrBn9L Aig4viEAKZI/
edit#slide=id.p

43

