December 12, 2024

UC BERKELEY CAPSTONE 210 FALL 2024

SolarScape.Al Go for Solar

Luis Cartagena, Alexandra Daniels, Nayan Ganguli, Jacob Jones, & Saurabh Pattarkine

Luis Cartagena

Alexandra Daniels

TABLE OF CONTENTS _

PROBLEM & 01. IMPACT

LIVE DEMO & 02. DATASETS

O3. ESYSTEM

MODELS & 04. NEXT STEPS

PROBLEM

Solar Potential Uncertainty

Difficulty in accurately assessing solar potential due to factors like roof obstructions and complex property layouts

Limited Scalability

Existing tools like *Google's Project Sunroof* often lack the scalability and accuracy needed for commercial and industrial applications

MARKET OPPORTUNITY

Market Gap

Addresses the limitations of existing solutions and expands to commercial and industrial sectors Enhanced Accuracy Surpasses Project Sunroof by accurately detecting roof obstructions (e.g. HVAC units), trees, open land, and parking lots

INTERVIEWS WITH INDUSTRY EXPERTS _____

Subject Matter Expert (SME)	Industry/Domain
Nicholas Brown	Utility Scale Solar and Wind Development
Chris Wheat	CEO - Policy & Government Affairs
Eugene Heimann	Large-Scale Solar Development
Matt O'Dell	Large Land Owner
Sanjay Singh	Machine Learning & Amazon Web Services
Emmanuel Bonsu	Software Engineer & Amazon Web Services
Vasha DuTell	UC Berkeley & MIT Computer Vision
Daniel, Katy, Benj, and Kate Jones	Recent Residential Solar Purchasers

OUR TARGET USERS

New Mexico

Ranked 2nd for potential solar-generated electric power production*

Residential

Homeowners interested in installing solar panels on their homes

Businesses

Companies interested in offsetting operating costs and carbon emissions

PRODUCT FEATURES

complicate equipment installation

Solarscape.ai

Empowering businesses and communities with intelligent solar solutions powered by advanced computer vision.

PRODUCT DEMO_____

DATASETS & APIs

GOOGLE API

Solar API

Evaluates the roof's solar potential energy

LatLngBox SolarPotential SizeAndSunshineStats

RoofSegmentSizeAndSunshineStats SolarPanel SolarPanelOrientation SolarPanelConfig

RoofSegmentSummary

FinancialAnalysis

Money

FinancialDetails

JSON representation

"maxArrayPanelsCount": integer, "panelCapacityWatts": number, "panelHeightMeters": number, "panelWidthMeters": number, "panelLifetimeYears": integer, "maxArrayAreaMeters2": number, "maxSunshineHoursPerYear": number, "carbonOffsetFactorKgPerMwh": number, "wholeRoofStats": { object (SizeAndSunshineStats) }, "buildingStats": { object (SizeAndSunshineStats)

DSIRE

20+ years of incentives and policies that support energy efficiency and renewable energy Focused on New Mexico's policy and incentive details

USA STRUCTURES

Footprints for all USA structures larger than 450 square feet; maintained by FEMA Focused on New Mexico's properties

Year

PRODUCT ARCHITECTURE & PIPELINE _____

Google Maps Tiles API

solarscape.ai 滋

MODELING APPROACH

Examine satellite images at the pixel level to capture fine-grained details and accurately identify rooftop obstructions and property boundaries

GOOGLE MAPS API_

Randomly selected images across rural, residential and commercial areas in New Mexico

Example Images

Image Size: 1024x1024 Pixels

Zoom Level: 17

Type: RGB Composite Layers

LABELBOX

Labeled 25 images for image segmentation

Each image had one labeler and one reviewer **7 classes:** Background, Open Land, Parking Lot, Roof, Roof Obstruction, Solar Panel and Trees

IMAGE AUGMENTATION

Increased images to 150

80% used for model training and 20% used for model validation

Original

Horizontal Flip

Vertical Flip

90° Rotations

MODELS EXPLORED

YOLO

Pros: Fast Inference Cons: Requires labels to fine-tune IOU Score: 0.1572 DICE Score: 0.2541

STEGO

Pros: Self-Supervised Learning; no labels needed Cons: Unresolvable Dependency Issues Val: N/A

Final Model

DINOv2

Pros: Self-Supervised Learning; not many labels needed to fine-tune; computationally efficient Cons: Dependency Issues (resolvable!) IoU Score: 0.4801 DICE Score: 0.5795

EARLIEST DINOv2 RESULTS_

DINOv2 Untrained

LATEST DINOv2 RESULTS_

Background

Trees

Legend:

DINOv2 LIMITATIONS

Our training data is imperfect

In this case, the model is picking up on potential open land that we did not identify

DINOv2 LIMITATIONS

Existing solar panels made up only 0.19% of pixels in our training data (235k pixels)

As a result, despite successful identification of solar panels, the shape can be unreliable

DINOv2 LIMITATIONS

Existing solar panels made up only 0.19% of pixels in our training data (235k pixels)

As a result, despite successful identification of solar panels, the shape can be unreliable

DINOv2 LIMITATION S

Inference time

There is loading time associated with real time inference in the backend

solarscape.ai 🖄

SCORING ALGORITHM

SCORING ALGORITHM

Run Whole Image Through the Model

Whole Image (pixels): 0: 2650342, 1: 186515, 2: 1221964, 3: 1031684, 4: 215823, 5: 29617, 6: 206344,

Limit to Pixels in the Bounding Box

Bounding Box (pixels): 0: 2800, 1: 1860, Roof: 1200, Obstruction: 60, 4: 2150, 5: 2960,

6:2100,

units: "% (Pixels)"
thresholds:
 low:
 min: 0
 max: 10
 moderate:
 min: 11
 max: 25
 high:
 min: 26
 max: 100
simple_score:
 (low: 2),
 mödērāte: 1
 high: 0

Run

Calculations

Compute Results

ROI (Return on Investment): The financial return achieved by investing in solar panels, calculated as the savings generated over time compared to the initial cost.

TECHNICAL TAKEAWAYS

Obstruction 01. Detection

Image labeling and segmentation

Custom Scoring Algorithm Makes product robust and scalable 02. Dynamic Property Bounds Bounds ected at zoom level 17 to ensure obstruction are captured

Journey with Sagemaker

OUR NEXT STEPS

"I'd put my money on the sun and solar energy. What a source of power!"

-Thomas Edison

Appendix

THANK YOU!

Joyce Shen & Korin Reid

Capstone 210 Section 7

SMEs:

Nicholas Brown Chris Wheat Eugene Heimann Matt O'Dell Sanjay Singh Emmanuel Bonsu Vasha DuTell Daniel, Katy, Benj and Kate Jones UC BERKELEY CAPSTONE 210 FALL 2024