AvalancheGuard

Al-powered Avalanche Observations

About us

Amiya Ranjan

Ana Zapata

Mandy Korphi

AvalancheGuard was developed as a Capstone project for the Master of Information and Data Science at the School of Information, University of California, Berkeley. We worked under the guidance of our advisors, Joyce Shen and Zona Kostic.

Table of Contents

01 02 03 04

Problem Space Our Solution

Technical Approach

Future Work

01 Problem Space

Introductio

Avalanche forecasts save lives. They nerp people who travel, live, work, and recreate in the backcountry make informed decisions about their activities in snowy mountain environments.

Forecaster Dreams

The executive director of the Sierra Avalanche Center & the former executive Director of AIARE (American Institute of Avalanche Research and Education) want more data.

More data "We want more people to tell us about avalanche activity they're seeing"

Timely data

"Especially, if someone triggers an avalanche, we want to know that before the next morning"

The State of Avalanche Forecasting

	a state
The let	1
C)	
1	

Snowpack Analysis

Weather Information

Field Observations

Opportunity to crowdsource for stronger forecasts

Assemble official forecast

Why crowdsource?

Official Forecasters in the entire Tahoe Area

People who read Avalanche Forecast in Tahoe Region 642 (<0.5%)

Observations in the Tahoe area last season.

What Skiers think

Barriers

Recreational skiers don't submit observations because they are nervous about writing the wrong thing.

A desire to help

Skiers would happily upload observations to our application if they knew it was helping the community. They would need guidance and reassurance on what constitutes a useful contribution.

Our Target Users

Image: https://www.cntraveler.com/story/how-to-safely-try-backcountry-skiing

Sierra Avalanche Center Facebook Post

Forecasters

Skiers

Impact

Observations

Number of observations logged.

Accuracy

Observation labeling accuracy of avalanche activity and red flags.

Time

Number of hours saved in an avalanche forecaster typical day

Our Solution

02

Our Solution - Demo

Let us walk through our app from the point of view of our target users.

Image: https://www.cntraveler.com/story/how-to-safely-try-backcou ntry-skiing

Sierra Avalanche Center Facebook Post

Forecasters

MVP Application Architecture

03

Technical Approach

Dataset

Datasets Summary

		Snowy Terrain? Filtering Model	Avalanche Presence? Filtering Model	Avalanche Type Classification Model
<u>Imagenet</u> Variety of other types of p Stanford University, Princeto	pictures n University	1	x	x
<u>Landscapes Datas</u> Pictures of coast, desert, forest, mo Kaggle Dataset, Published by U	<u>et</u> ountains & glacier tkarsh Saxena	~	x	x
<u>Primary Dataset:</u> Ground-Based images of avalanches	Wide-Angle Original Version	√	✓	x
University of Innsbruck, Austria github.com/j-f-ox/avalanche-detection	Close-Up Version (Cropped)	~	✓	✓

Primary Dataset - EDA

- European bias
- Expertly labeled dataset
- High resolution 3-color jpg images
- Wide-angle pictures
- Conflicting labels (8% images have conflicting labels)

Primary Dataset Pipeline

- **Crop** close-ups of avalanches from original wide-angle pictures.
- **Resize** all images to 224x224, consistent w/ many computer vision foundation models.
- Balance Classes w/ undersampling

Primary Dataset - Cropping Procedure

Cropping:

- Simplifies classification w/ close-up shots instead of wide-angle
- Cleans by removing images with conflicting labels
- Augments dataset ~5x

Modeling Approach

Cascaded Model Architecture

3 Cascaded Models successively take an input picture uploaded by a snow enthusiast and

- 1. Filter out any pictures that are not a snowy mountain
- 2. Filter out any pictures that don't feature an avalanche
- 3. Classify a valid picture of an avalanche into an avalanche type: glide, loose, or slab

Individual Model Architectures

All 3 models are fine-tuned on EfficientNetV2S. Differences in task complexity and nature (binary vs multi-class) drive differences in fine-tuning layers and parameters.

Input	(224, 224, 3)			
Output	Binary			
Model	Fine-tune EfficientNetV2S			
Finetuning Layers	GlobalAveragePooling2D() Dense(1, activation = 'sigmoid')			
Hyperparameters				
Learning Rate	0.001			
Optimizer	Adam			
Batch Size	32			
Epochs	10			
Loss Function	binary_crossentropy			
Evaluation	accuracy			

Binary Filtering Models

Avalanche Classification Model

Input	(224, 224, 3)
Output	Glide Avalanche Loose Avalanche Slab Avalanche
Model	Fine-tune EfficientNetV2S
Finetuning Layers	GlobalAveragePooling2D()(x) BatchNormalization()(x) Dropout(0.5)(x) Dense(1024, activation='relu')(x) Dropout(0.5)(x) Dense(num_classes, activation='softmax')(x)
Hyperparameters	
Learning Ra	te 0.001 to 0.0001 w/ ReduceLROnPlateau & patience 3
Optimizer	Adam
Batch Size	32
Epochs	40 w/ tf.keras.callbacks.ModelCheckpoint
Loss Function	sparse_categorical_crossentropy
Evaluation	accuracy

Model Approach

- We landed on EfficientNetV2S fine-tuning, leveraging a common image classification transfer learning approach for our moderate dataset size.
- Feature extraction of colors and texture was insufficient due to image complexity
- Transformer-based approaches are state-of-the-art but difficult b/c of our small dataset
- Cleaning data, preprocessing, class balancing, fine-tuning layer params were also all tuned

Validation Accuracy	Classes	Multiple Labels	Preprocessing	Balancing Approach	Model	Notes			
0.3			oqualizeHist		CNN simple	Decisions			
0.4		yes	ves	ves GaussianBlur	GaussianBlur	GaussianBlur	aussianBlur	Resnet Finetune	1. Abandon preprocessing
0.35	Glide, Loose, Slide None		adaptiveThreshold Undersample EfficientNetB4 red Color & Texture Fea + Logistic Regression Color & Texture Fea + Random Forest	EfficientNetB4	2. Cascade Models				
0.4		removed			Color & Texture Features + Logistic Regression				
0.6					Color & Texture Features + Random Forest	Decision:			
0.56		Removed by	none	Augment: - rotate	Color & Texture Features + Logistic Regression	despite small improvements			
0.55	Glide, Loose, Slide	Cropping, effectively		- flip horizontal	Color & Texture TOP 42 Features + Logistic Regression				
0.7		augmenting	augmenting			Can't save model!			
0.73				Undersample	EfficientNetB4	Known TensorFlow Bug			
0.79				Undersample	EfficientNetV2S	Winner			

Classification Model Experiment Tracker

Model Performance

Model Performance - Filtering Models

Amazing at filtering out irrelevant pictures

99% accuracy

Great at detecting presence of an avalanche False positives often have skier tracks in the image 84% accuracy

False Positive

True: 0, Pred: 1

Model Performance - Classification Model

Model Performance - Mitigation

For optimal performance with our model, skier pictures should center and focus on the avalanche.

We provide this guidance (and more fun tips!) on our website.

Close-ups more likely anyway from a skier w/ cell phone camera.

Website - Education Section

🏂 Skiers' Guide to Snapping Pics for Better Forecasts!

Hey, backcountry enthusiast! 注 Want to help make avalanche forecasts even more accurate? If you see or trigger an avalanche, when everyone is safe, submit a picture of the avalanche on our app. Forecasters rely on pictures of avalanche activity to help determine risk levels. Here's how you can upload the best photos... Your local friendly avalanche center will thank you! Remember to be safe in the backountry!

Quality Shots Center and focus on the avalanche.	Stay Relevant Capture avalanche, location, and timestamp.	Ethical Ski Snaps No identifiable people, keep it family-friendly.	Explain and Detail Describe what you see, if you can.
Tech Tips Use JPEG, PNG, or TIFF, and keep it under 10MB.	Follow the Rules Upload only your photos and follow the laws.	Avalanche Awareness Prioritize Safety in the Backcountry.	Cool AI Practices We value transparency, accuracy, and fairness.

Model Evaluation

Model Evaluation

Models were evaluated using a combination of metrics and analysis tools. Accuracy was used for model training because the type of misclassification is not important.

Misclassified Images

True: 0. Pred: 1

Class Activation Maps

True: 0. Pred: 1

Technical Challenges & Takeaways

Closing Remarks

Roadmap

Wide-angle image performance improvements by including a segmentation model

Instagram integration, where many users get their avalanche risk information & already upload images

Expand forecaster-facing observations insight platform to enable sorting and other visualizations

Our Mission

We aim to improve safety in the mountains

by crowdsourcing avalanche observations, and accurately labeling them w/ machine learning,

for avalanche forecasters to obtain

the volume of field data they need to complement their weather and snow pit data

to provide the public with more accurate and precise avalanche risk forecasts.

Special Thanks

We'd like to thank everyone who advised us and provided feedback throughout our capstone project, especially:

- David Reichel, Executive Director at the Sierra Avalanche Center, for guidance, feedback, and data.
- Richard Bothwell, former Executive Director of AIARE, for guidance, feedback, and avalanche safety insights.
- Jeffrey C, forecaster, for feedback and explaining the forecaster's process.
- David, Arnaud, Zara, and other backcountry skiers for sharing their experiences and insights.
- Jaeyoung Lim from ASL at ETH Zurich and Elisabeth Hafner from WSL SLF for sharing their avalanche research insights in Switzerland.

Resources

PHOTOS

Slide 5: Images and quotes from Sierra Avalanche Center Facebook posts & avalanche.org Slide 28: Sierra Avalanche Center Facebook page Slide 25: Adventure Sports Journal Adrian Tanic, Unsplash Paul Bill, Unsplash Krzysztof Kowalik, Unsplash Slide 4: Nicolas Cool, Unsplash Matea Nikolina, Unsplash Lucas Leonel, Unsplash Jasper Guy, Unsplash Slide 16, 43: Alberto Restifo, Unsplash Slide 2: Anders Jilden, Unsplash Slide 1, 7, 8, 17: Alessio Soggetti, Unsplash Slides 16, 20, 24, 28: Fox et al

Information and Links

Slide 6, 7 and 8: <u>Sierra Avalanche Center Annual</u> <u>Report 2020</u>

Datasets

"Automating avalanche detection in ground-based photographs with deep learning". The accompanying dataset of avalanche photographs is available at <u>https://researchdata.uibk.ac.at//records/h07f4qzd17</u>.

Addison Howard, Eunbyung Park, Wendy Kan. (2018). ImageNet Object Localization Challenge. Kaggle. <u>https://kaggle.com/competitions/imagenet-object-localization-challenge</u>

Landscape Recognition | Image Dataset | 12k Images, https://www.kaggle.com/datasets/utkarshsaxenadn/lan dscape-recognition-image-dataset-12k-images

Our MVP

Demo 1

AvalancheGuard website