°DIVITI/LE.

-Empowering Your Investment Research with Artificial Intelligence-

David Campos | Krystyna Perez | Andrew Abrahamian | Dean Nakada | Geoffrey Wilson Date: August 5, 2024

Team DIVITIAE.

David Campos Lead

Krystyna Perez Al

Andrew Abrahamian

Quant

Dean Nakada Marketing

Geoffrey Wilson Legal & Sales

Agenda

- 1. Problem and Customer Space
- 2. Solution Space
- 3. Overall Architecture
- 4. Technology: Quantitative Processing
- 5. Technology: Generative Al
- 6. Looking Forward

01

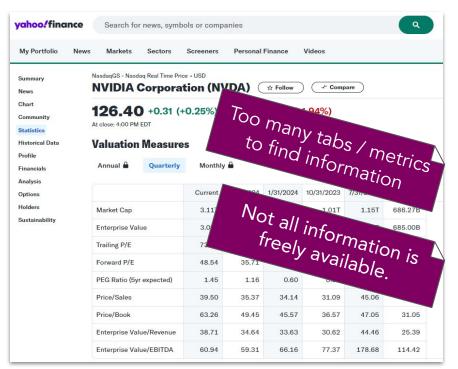
Problem and Customer Space

Problem Statement

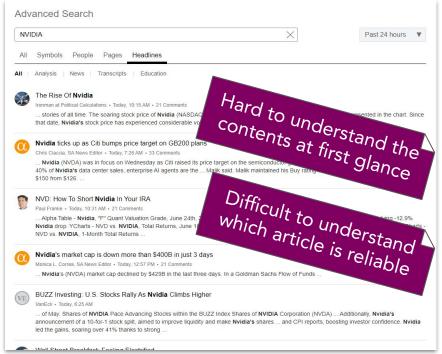
As a retail investor, I am wasting time researching investment opportunities across disparate sources.

I need a streamlined source of intelligence.

Competition



Seeking Alpha^α



Quantify the Issue

553 survey participants

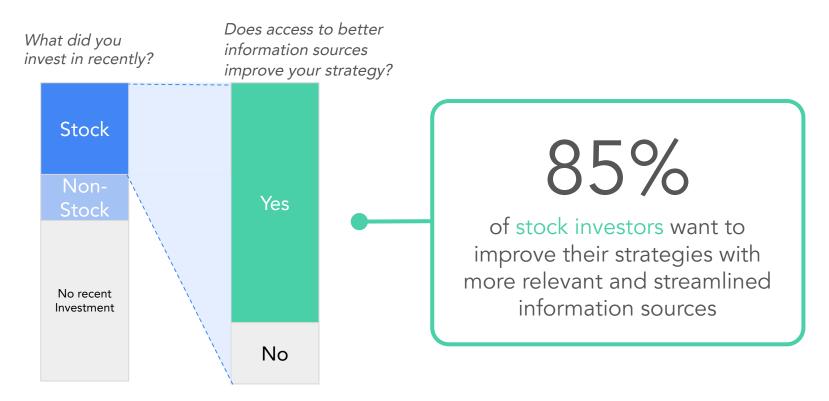
- What do you invest in?
- Are you satisfied with the process?
- What will improve your decision?
 etc.

Understand Pains & Needs

17 interviewees

- How do you make a decision?
- How do you use resources?
- How long do you take for a decision?
 etc.

Impact Assessment



Based on an online survey conducted with 553 participants from July 3 to July 4, 2024.

Questions: 1. What types of investment products, excluding retirement accounts, have you traded in the last 2 years?

2. To what extent do you believe your investment strategy improves with better information sources? (Responses were on a 5-point Likert scale, with "Strongly Agree" or "Agree" regarded as "Yes.")

As a retail investor, I want to make intelligent investment decisions quickly & effortlessly.

For this, I need access to current, comprehensive, precise, and evidence-based intelligence.

Value Propositions

Completeness

One-stop shop for all needed investment process intelligence

Efficiency

Hit me only with the most important intelligence first. And summarize it for me.

Evidence

Make sure this intelligence is generated from legitimate sources. Give me the ability to cross-reference from sources.

Product

°DIVITIAE. Terminal

Key Metrics

A numeric snapshot of a stock's basic financial health, including its market value, profitability, and efficiency ratios

Valuation

A visual representation of a comparison of a company's stock price and net present value, which reflects its intrinsic value

Performance

A visual representation of a company's revenue and income, which provides insights into its performance and growth potential

Market hype

A visual representation of the frequency of mentions of a company in news outlets

News Summary

Al-generated summaries of news articles covering various aspects of a company, with a comprehensive headline

Earnings Call Summary

Al-generated summaries of a recent earnings call, that helps a holistic performance evaluation of a company

Demo

Testimonials

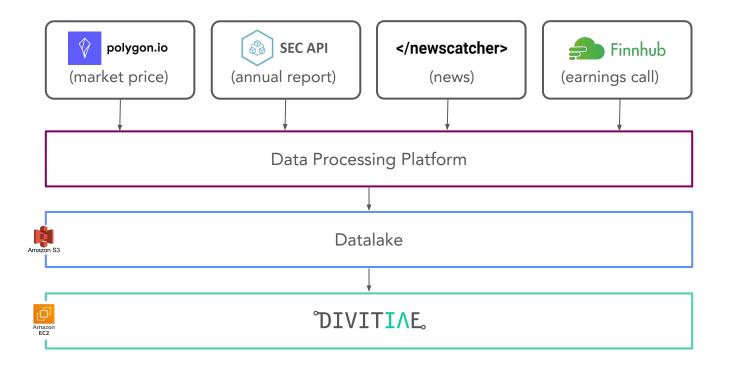
Loved the simplicity. Does not have to do any math on ratios or calculations. Really impressed by Al-generated summaries.

The news and their earnings calls summarization feature isn't available on any other platform.

03

Overall Architecture

Technology Architecture Overview



Deep Dive: Data Processing Platform Input Data Imports proprietary General Purpose Compute Machine Learning Compute Triggers package job Orchestrator divitiae_etl AWS CodeArtifact Quantitative Generative Al Amazon SageMaker Amazon EC2 (package) (process automation) Jobs Jobs Amazon ith job Market Ready Data (MRD) Datalake

DIVITIAL

04

Technology: Quantitative Processing

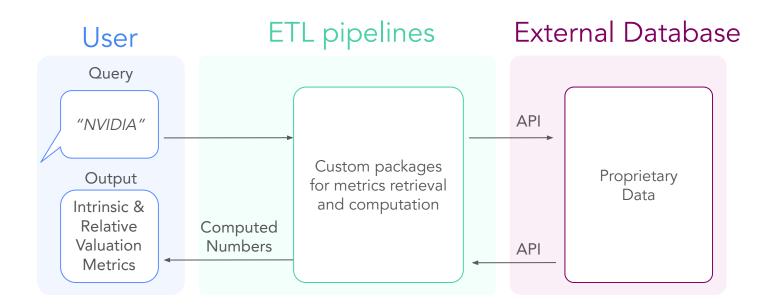
Quantitative Data

Developed 12 distinct quantitative models from 2 APIs

Data / API	What's Inside	Usage	EDA Takeaway
polygon.io	Real-time and historical market data for stocks	Extract stock market prices	 Real-time market data from all US stock exchanges; returns data frames and custom objects Key features: share prices, volume of shares outstanding for company stock
SEC API	Financial and regulatory data for publicly traded companies	Access financial performance from annual / quarterly reports	 Search and filter company financial statements filed with the SEC Key objects: income statements, balance sheets Key features: revenue, operating income, interest & tax expenses, cash holdings, long-term debt

Understanding the Quantitative Pipeline

- Based on customer queries, the pipeline access external database via API to compute metrics
- Evidence-based Discounted Cash Flow (DCF) assumptions using reported facts
- Complement DCF-based valuation with relative valuation metrics



05

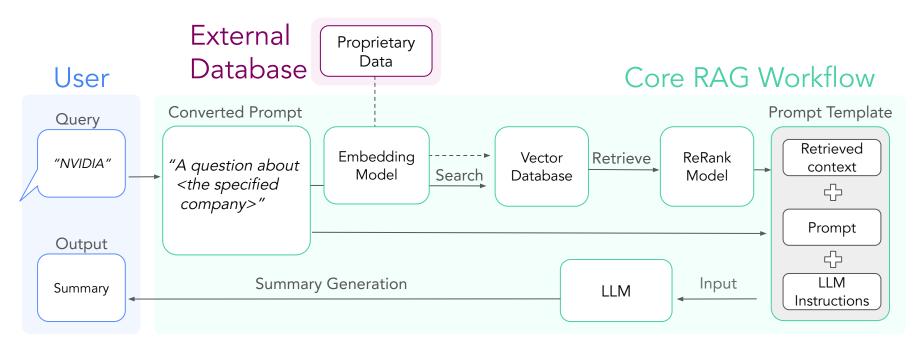
Technology: Generative Al

Natural Language Data for RAG

Data / API	What's Inside	EDA Takeaway
	News articles from diverse sources across the web	 Dataset is huge. +1M articles / day comes from 70,000 sources in 195 countries and 55 languages. Clean structure overall, with minor missing values in features like author. Avg. number of articles differs widely by company . (e.g., Apple: >1000/day, Unilever: <100/day) Numerous duplicates present, requiring resolution in the pipeline.
Finnhub	Financial and regulatory reporting for publicly traded companies	 Dataset Contains 15+ years of transcripts for over 65,000 global companies. Careful engineering was needed as transcripts for other types of events were included alongside earnings calls Addressed anomalies due to discrepancies between calendar and fiscal years. Original data was segmented by speakers; concatenation was performed for continuity.

RAG Pipeline

- Retrieval Augmented Generation (RAG) is the process of enhancing LLMs by incorporating additional information from external knowledge sources.
- This framework enables us to gather the latest news and earnings call information, which we use to create concise summaries.



RAG Evaluation

Considering the diverse elements of the RAG pipeline and potential future developments, we've adopted a holistic evaluation approach for various modeling combinations.

44

X

47

evaluation metrics

total modeling combinations

- Prompt
- o LLM
- Embedding model
- Doc chunk size
- Doc overlap size
- Retrieval quantity
- Rerank quantity

SBERT Similarity

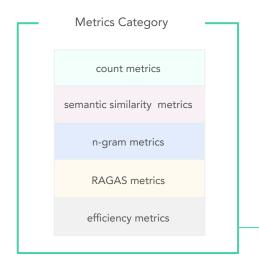
SimCSE Similarity

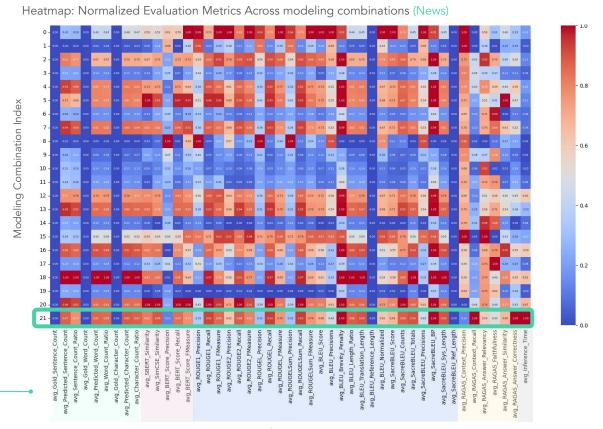
:

- RAGAS Context Precision
- RAGAS Answer Similarity
- RAGAS Answer Correctness

RAG Evaluation (News)

- The evaluation pipeline uses count, similarity, n-gram, RAGAS, and inference metrics.
- The 21st model was chosen for its balance of similarity and RAGAS metrics.

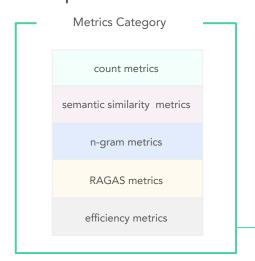


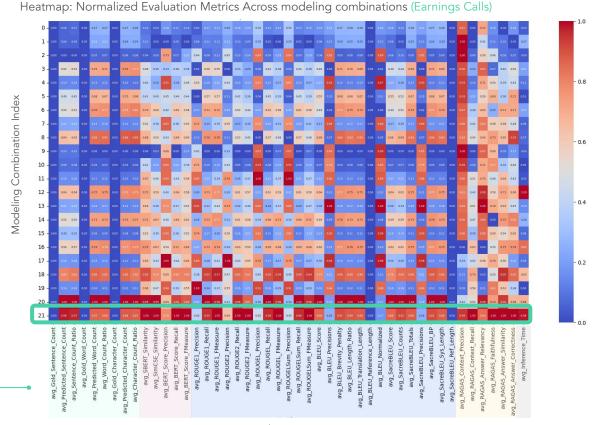


Evaluation Metrics

RAG Evaluation (Earnings Calls)

- The 21st modeling combination was also chosen for earnings calls.
- The heatmap shows clearer results than news, likely due to dialogue in earnings call transcripts.





Evaluation Metrics

Best RAG Component Combination

Best Modeling Combination

Component / Parameter	Solution / Value
Prompt	v2
LLM	ChatCohere
Embedding Model	GISTEmbed
Doc Chunk Size	512
Doc overlap size	128 (1/4 of the total)
Retrieval quantity	200
Rerank quantity	50

Score of the Focus Evaluation Metrics

		Score	
Evaluation Metric	Objective	News	Earnings Calls
SBERT Similarity	Semantic similarity	0.85	0.91
SimCSE Similarity	Sentence-level similarity	0.86	0.91
RAGAS Context Precision	Accuracy of context inclusion	0.86	0.99
RAGAS Context Recall	Completeness of contextual information	0.61	0.72
RAGAS Answer Relevancy	Relevance of summary	0.60	0.67
RAGAS Faithfulness	Compares similarity	0.81	0.95
RAGAS Answer Similarity	Similarity	0.88	0.94
RAGAS Answer Correctness	Factual correctness	0.67	0.65

06

Looking Forward

Key Challenges

Design Area	Challenge	Solution
Technology Architecture	Integrating various technologies	Automation of programmatically generated ML environments
Al Engineering	Mastering new RAG and LLM technologies	Tested 44 model combinations against 47 key evaluation metrics
Problem Space & Customer Development	Narrowing problem space & target customers	Continue customer development (~600 interviews & survey responses)
Intellectual Property Law	Managing risk given evolution of legal landscape for Al generated content.	Including data summary sources, monitoring legal decisions.

Product Roadmap

Design Area	User Story	Implementation
Scale & Coverage of Intelligence	As a user, I want to be able to see more intelligence per company, as well as all companies in a stock exchange	Generalize solution from subset of publicly traded companies for all publicly traded
Cohort Analysis	As a user, I want to compare, cluster, and rank different companies by category	Develop and deploy comparison metrics and visualization components to the user interface
User Education	As a user, I need help understanding financial terms and visuals related to investment research	Add an education component that fosters financial literacy
Accessibility	As a user with disabilities, I want to enjoy the value propositions of this product	Ensure multi-platform compatibility to increase accessibility

Our Mission

Democratizing financial information, by empowering all with a wealth of intelligence and intelligence of wealth

Solution

DIVITIAE.AI simplifies investment research with key features, saving time and increasing investment confidence

We would like to express our gratitude to:

- NewsCatcher Inc. and Finnhub for generously providing us with free access to their data.
- Interview Participants for sharing valuable insights and suggestions with us.

Instructors Joyce Shen and Zona Kostic for their consistent and instrumental guidance throughout the project.

- NLP instructors Mark Butler and Natalie Ahn for their extensive hands-on advice on NLP development.
- All Capstone classmates for their constructive feedback and inspiring ideas.

Acknowledgements

Appendix

Discounted Cash Flow

$$DCF = \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \frac{CF_n}{(1+r)^n}$$

where:

 CF_1 = The cash flow for year one

 CF_2 = The cash flow for year two

 CF_n = The cash flow for additional years

r =The discount rate

The <u>discount rate</u>: Weighted Avg Cost of Capital

WACC = (%Equity × Cost of Equity) + (%Debt × After-Tax Cost of Debt)

where:

%Equity = Value of Firm's Equity / Total Value of Capital (Equity + Debt)

%Debt = Value of Firm's Debt / Total Value of Capital (Equity + Debt) Cost of Equity = $Rf + \Box \times Rm - Rf$

where **Rf** = Risk-Free Rate.

Rm = Market Return

III - Market Neturi

□ = Covariance(Company Stock Return, Rm) ÷ Variance(Rm)

Cost of Debt = Interest \div Debt \times (1 - Tax Rate)

To forecast future cash flows: use historical growth rate of net income

To compute discount rate: use the following assumptions

- **Risk-free rate pinned to 4%** (approximate yield on U.S. 10 Year Treasury Bond)
- Market return pinned to \$SPY (index fund that approximates S&P 500)

Market Cap: Last Share Price X # of Shares Outstanding

Enterprise Value (EV): Market Cap + Long-Term Debt - Cash ✓ Cross-company valuation compares

Earnings Per Share: Operating Income ÷ # of Shares Outstanding ✓ Complements DCF-based valuation

Price-to-Earnings (P/E): Last Share Price + Earnings Per Share