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ABSTRACT 

 
With the proliferation of AI products, humans and AI are increasingly working in partnership 
with each other to make decisions. For this type of collaboration to be successful, humans 
need to understand AI capability in order to effectively calibrate their trust. In these 
partnerships, it’s critical to explain decisions and predictions in a manner that can be 
understood by humans in order to encourage trust calibration. The field of explainable AI is 
focused on integrating explainability into AI, but is geared towards making AI models more 
interpretable. As a result, this research often approaches explanations from a model-centric 
perspective, as opposed to a human-centered perspective. At the same time, industry 
researchers have developed guidelines to help interface designers effectively generate 
user-friendly explanations. However, these guidelines are typically too broad to be effective 
for the day-to-day work of industry designers. Our research addresses this gap through two 
approaches: an empirical experiment to investigate how people respond to explanations and 
what types of explanations are most helpful for trust calibration, and an educational 
resource for industry designers to help them understand what questions users might have, 
and how the context of use influences what explanations they may use. Findings from our 
experiment indicate that explanations do not always aid trust calibration, and can actually 
hurt it, especially in the face of novice users who have low self-competence. Our exploratory 
interviews and usability testing with industry designers reveal that there is a desire for a 
comprehensive but accessible educational resource that translates research such as our 
experiment and guides the design of explainable interfaces for AI products. 
 
 

KEYWORDS 
 
decision support, trust, confidence, explainable artificial intelligence, human-AI interaction, 
user experience 
 
  



1. INTRODUCTION 
 
Artificial Intelligence (AI) has become ubiquitous, integrating into a variety of applications. 
One such application is AI-assisted decision making, wherein the individual strengths of a 
human and AI combine in order to produce a decision outcome that is better than what 
either could produce alone (Zhang et al. 2020). AI can help people make decisions ranging 
from the mundane to the monumental; from what movie to watch or what route to take to 
the likelihood a defendant will reoffend or whether someone has cancer. Full automation is 
often undesirable, especially in high stakes scenarios such as healthcare, finance, or 
criminal justice, given the probabilistic nature of AI and potential input error, flaws, and 
biases in the underlying training data. As the performance of AI continues to improve, there 
is a fundamental challenge in AI-assisted decision making: balancing the powerful 
capabilities of AI with designing technologies that are understandable by humans (Abdul et 
al. 2018). 
 
In order for these human-AI decision making partnerships to be effective, people need to 
know when to trust or distrust an AI’s prediction, thereby forming a correct mental model of 
the model’s error boundaries (Bansal et al. 2019). As a result, trust calibration is key to the 
success of AI-assisted decision making. If a person trusts AI when the AI is likely to err or 
distrusts AI when the AI is likely to be correct, the joint decision outcome would suffer. Poor 
decision outcomes can be catastrophic in high stakes scenarios. For example, ProPublica 
published a report that revealed alarming biases in COMPAS, a risk assessment tool used to 
predict the likelihood a defendant will reoffend. This is troublesome given its influence on 
sentencing decisions, and the higher weight it carries in the hands of judges with less 
experience (Angwin et al. 2016). In order to form a correct mental model of an AI model’s error 
boundaries, a person must correctly calibrate trust on a case-by-case basis. This goal is 
different from building or increasing trust in AI; increasing trust does not necessarily help 
people distinguish cases they can trust an AI’s prediction from those that they should not 
(Zhang et al. 2020).  
 
There is increasing societal pressure and legislation demanding that AI systems and 
predictions are explained to users, such as the European Union General Data Protection 
Regulation (GDPR) who approved the “right to explanation” in 2016 which mandates that data 
subjects receive meaningful information about the logic involved in automated 
decision-making systems (Selbst & Powles 2017). Explanations help provide transparency, 
enable assessment of accountability, demonstrate fairness, and facilitate understanding 
(Sokol & Flach 2020). Most of the research on explainability focuses on making the models 
themselves interpretable, relying on a researcher’s intuition on what constitutes a good 
explanation (Miller 2017). While creating more interpretable models is a significant 
contribution, there are numerous challenges to incorporating explainability in AI systems, 
such as the rise of “black box” models which are often unintelligible even to technical 
experts and the protection of intellectual property, resulting in hesitance to reveal the 



underlying model or algorithm. Furthermore, there is a lack of clear guidance on what type of 
explanations to use, when to use them, and how to create effective explainable interfaces. 
For example, AI transparency can have a positive impact, however if there is too much 
uncertainty, trust can be negatively impacted (Stowers et al., 2017). This lack of tangible 
guidance stems from a lack of empirical research on the human-side of explanations that 
examines whether users in real-world situations consider these “intelligible models” and 
explanation interfaces to be understandable, practical, or usable (Cheng et al. 2019).  
 
In this paper we contribute to the human-side of explanations in two ways: 

1. An empirical study of how people respond to explanations in a scenario with high 
uncertainty and risk; 

2. An online, interactive resource that outlines a human-centered design strategy and 
brainstorming tool for creating explanation interfaces.  

 

 

2. RELATED WORK 
 

2.1 Trust 
 
Some researchers have argued that human-AI teams function similarly to human-human 
teams, particularly with AI that mimics human intelligence and thereby resembles 
human-human trust (Kessler et al. 2017). Madhavan and Wiegmann presented a theoretical 
framework that synthesizes and describes the process of trust development in 
human-human and human-automation relationships. While people have a propensity to 
apply norms of human-human interpersonal interaction to human-automation interaction, 
there are subtle differences. In AI-assisted decision making, the human moves from being 
the primary decision maker to being an active teammate and sharing control with 
automation. As a result, decision-making processes of human-AI teams are often influenced 
strongly by a person’s trust in an AI team member relative to a human partner (Madhavan & 
Wiegmann 2007). Trust is also important in AI-assisted decision making because of its use 
in high stakes scenarios, wherein risk and uncertainty coexist and there is ongoing 
risk-taking (Cheshire 2011).  
 
Various factors can influence use and trust in AI: trust disposition, attitude towards AI, risk, 
task complexity, and self-confidence (Parasuraman and Riley 1997). There are two critical 
elements that define the basis of trust: the focus of trust (what is to be trusted) and the type 
of information that describes the entity to be trusted (Lee & See 2004). This information 
guides expectations regarding how well the entity to be trusted can achieve the trustor’s 
goal. Trust in an information system, such as AI, involves expectations about the system’s 
predictability and reliability (Cheshire 2011). This is supported by a meta-analysis of factors 
that influence human-automation interactions (HAI) which revealed that the most important 
consideration is reliability (Kessler et al. 2017). Therefore expectations about reliability 



influences trust and expectations about what a system can and cannot do influences trust 
calibration. There are three aspects to expectation forming: external information, knowledge 
and understanding, and first-hand experience through a sense of control (Kocielnik et al. 
2019). Expectations of system capabilities are typically set through mental models. Mental 
models are a person’s understanding of a system and how it works.  
 
A common mental model of AI systems is that they perform flawlessly all of the time; most 
people do not expect AI to behave inconsistently and imperfectly (Kocielnik et al. 2019). This 
can result in inattention, wherein a person fails to evaluate and monitor system 
performance, and overreliance. Inattention can also be caused by the high cognitive load 
that is often needed to monitor complex AI systems. Conversely, people expect humans to be 
prone to error. Therefore people will forgive a human for making a mistake but are less likely 
to keep using an AI if it falters, even if it outperforms humans on average (Alexander et al. 
2018). Both scenarios indicate flawed partnerships, or poor trust calibration, between 
humans and AI. 
 
Trust calibration refers to the correspondence between a person’s trust in the AI and the AI’s 
capabilities (Lee & Moray 1994). Overtrust, when trust exceeds the system’s capabilities, 
leads to misuse. Misuse refers to failures that occur when people inadvertently violate 
critical assumptions and trust AI when they shouldn’t (Lee & See 2004). Misuse can result in 
people relying uncritically on automation without recognizing its limitations or monitoring 
the automation’s behavior (Parasuraman and Riley 1997). Distrust, when trust is less than 
the system’s capabilities, leads to disuse. Disuse refers to failures that occur when people 
reject the capabilities of AI, failing to use it when they should (Lee & See 2004). These flawed 
partnerships can result in outcomes that are costly and even catastrophic. 
 

 
 

Trust Calibration: Correspondence between Trust and AI Capability 

 
 



In addition to trust calibration, specificity and resolution can mitigate misuse and disuse of 
AI. Resolution is a measure of how precisely a judgment of trust distinguishes between 
levels of automation capability. Good resolution means that the range of system capability 
maps onto the same range of trust. Specificity is the degree to which trust is associated with 
a particular component or aspect of the AI (Lee & See 2004). Specificity can be functional or 
temporal. Functional specificity refers to the differentiation of functions, subfunctions, and 
modes of AI. High functional specificity means that a person’s trust reflects the specific 
capabilities of the AI’s subfunctions and modes, while low functional specificity means that 
a person’s trust reflects the general capabilities of the system. Temporal specificity 
describes the sensitivity of trust to changes in context and time that affect AI capability. 
High temporal specificity means that a person’s trust reflects frequent fluctuations of AI 
capability, whereas low temporal specificity means that the trust reflects only long-term 
changes in AI capability. Enhancing human-AI partnerships lies in good calibration, high 
resolution, and high specificity of trust (Lee & See 2004).  
 
A key question arises: how do people know whether or not to trust an AI, especially given the 
lack of affordances to assess trustworthiness? Trustworthiness is a characteristic or 
property, which can be inferred through explicit or implicit information (Cheshire 2011). A 
potential way to signal trustworthiness of an AI is through explainability.  
 
 

2.2 Explainable AI (XAI)  
 
Explainable AI (XAI) is a research field that aims to make AI systems more understandable 
(Adadi & Berrada 2018). While the term “XAI” was first coined in 2004, the problem of 
explainability has existed over the past decades with expert systems in the mid-1970s, 
Bayesian networks and artificial neural networks in the 1980s, and recommender systems in 
the 2000s (Abdul et al. 2018). The rise of black box models coupled with the increasing use of 
AI in high stakes scenarios has resulted in a recent surge of interest and focus on 
explainability.  
 
Explainability is related to the concept of interpretability; interpretable systems are 
explainable if they can be understood by a human. There are four main needs for 
explainability: explain to justify a prediction, which is particularly important in cases where 
there is a concern for biased or discriminatory results; explain to control, enabling 
debugging or intervention; explain to improve; and explain to discover new information 
(Adadi & Berrada 2018). Various domains have a need for explanation, including 
transportation, healthcare, law, finance, and the military.  
 
Explainability methods can be classified based on three criteria: (1) the complexity of 
interpretability, (2) the scoop of interpretability, and (3) the level of dependency from the 
used ML model (Adadi & Berrada 2018). Complexity related methods refers to the complexity 
of the model; the more complex it is, the harder it is to explain. There are two main 



strategies. Ante-hoc approaches use the same model for predictions and explanations. These 
approaches are thought to provide full transparency and are typically model-specific 
because they are designed for and only applicable to a specific model. Post-hoc approaches 
use a different model to reverse engineer the inner works of the original model and provide 
explanations. These approaches are thought to lighten the black box of complex models and 
are typically model-agnostic because they are designed to work with any type of model. 
Scoop related methods refer to how much of the model is being explained: the entire model 
behavior (global interpretability) or a specific prediction (local interpretability). Global 
explanations help users understand and evaluate the system. Local explanations help users 
examine individual cases, which can help with identifying fairness discrepancies and 
calibrating trust on a case-by-case basis. Finally, model related methods refer to the breadth 
of application of an explanation method. Model-specific interpretability refers to methods 
that are limited to specific model classes. Model-agnostic interpretability refers to methods 
that are not tied to a specific model (Adadi & Berrada 2018). 
 
Explanations can also have various characteristics.  Explanation fidelity includes soundness 
and completeness. Soundness refers to how truthful an explanation is with respect to the 
underlying predictive model. Completeness measures how well an explanation generalizes; 
in other words, what extent it covers the underlying predictive model (Kulesza et al. 2013). 
Explanations can be static or interactive. Interactive explanations accommodate a wider 
array of user needs and expectations. Some examples of interactivity include explanations 
that are reversible, collect and respond to user feedback, and allow adjustment of 
granularity. Explanations can have different formats. They can be delivered as a 
summarization (typically with statistics), visualization, text, formal argumentation, or a 
mixture of the above (Sokol & Flach 2020). 
 
However, there is limited research on whether explanations and explanation interfaces are 
usable and practical to users. Most research measures the participant’s understanding of 
the model which can be indicative of trust calibration; if a user understands a model, it 
follows that they will know when to trust it and when not to. Some research has focused on 
other aspects of explainability such as detecting fairness issues. From our review, few 
research studies have directly measured trust calibration. 
 
Lim et al. examined how different types of explanation impacts users’ experience, 
specifically in regard to understanding of the system and perceptions of trust and 
understanding of the system. The four types of explanations they tested were: Why, Why Not, 
What If, and How To (Lim et al. 2009). The key measures used to determine what types of 
intelligibility explanations would help users understand the system were task performance 
(in terms of task completion time) and user understanding (in terms of correctness and 
detail of reasons provided by the participants). The study showed that the Why and Why Not 
explanations, compared to the other explanations, resulted in improved understanding, 
increased trust in the system, and increased task performance. The authors suggested using 
Why explanations as the primary form of explanation and Why Not explanations as a 



secondary form because of the increased mental effort needed to understand the Why Not 
explanation (Lim et al. 2009). 
 
Cheng et al. studied different explanation interfaces for understanding an algorithm used to 
make university admission decisions. The explanation types studied included (1) white-box 
vs. (2) black-box (showing the internal workings of the algorithm vs. not showing), and (3) 
interactive vs. (4) static (enabling users to explore algorithm behavior vs. not enabling). The 
evaluation metrics were objective understanding assessed through 3 quiz questions as well 
as self-reported understanding. The researchers found that both white-box explanations and 
interactive explanations can improve users’ comprehension (Cheng et al. 2019).  
 
Kulesza et al. tested the impact of different explanation characteristics, specifically 
completeness and soundness, on mental models and understanding through a qualitative 
study. They tested four treatments: HH (High-soundness, High-completeness), MM 
(Medium-soundness, Medium-completeness), HSLC (High-soundness, Low-completeness), 
and LSHC (Low-soundness, High-completeness). Mental models were measured through a 
combination of short-answer and Likert scale questions (Kulesza et al. 2013). Their findings 
showed that the most sound and most complete explanations (HH) were most successful at 
helping participants understand how the AI system worked. Participants in the HH condition 
also trusted their explanations more than participants in the other treatments.  
 
Dodge et al. studied how people make judgments about fairness of machine learning 
systems and how different types of explanation impact that judgment. The authors utilized 
the COMPAS recidivism data and tested four types of explanation: two global, or system-level 
explanations (input influence-based and demographic-based) and two local, or 
instance-level explanations (sensitivity-based and case-based). The authors found that local 
explanations were more effective than global explanations at exposing case-specific 
fairness issues and that individuals’ prior position on ML trust and feature fairness had 
significant impact on how they react to explanations (Dodge et al. 2019). Global explanations 
were beneficial for increasing confidence in understanding the model. The authors suggest a 
hybridized approach (having both global and local explanations) may be well-suited for a 
human-in-the-loop workflow: “using global explanations to understand and evaluate the 
model, and local explanations to scrutinize individual cases” (Dodge et al. 2019). They also 
suggested a new categorization of explanations: process oriented (how) vs. data oriented 
(justification). The key limitation to this work was that it was tested with crowdworkers 
rather than judges, who have more expertise in this field and would be the target users of 
this type of risk assessment tool (Dodge et al. 2019).  
 
Zhang et al. conducted a case study of AI-assisted decision making in which humans and AI 
have comparable performance alone, and explores whether confidence or a local explanation 
can calibrate trust and improve the joint performance of the human and AI (Zhang et al. 
2020). This research was conducted over two experiments, both of which used an income 
prediction task. The first looked at confidence score. The conditions included show vs. not 



show AI confidence, show vs. not show AI prediction, and full vs. partial model. They used 
stratified sampling of cases across confidence levels (Zhang et al. 2020). The second 
experiment looked at a local explanation, specifically feature importance, and only had a 
full-model condition. Key measures for trust included switch percentage: the percentage of 
trials in which the participant decided to use the AI’s prediction as their final prediction and 
agreement percentage: the percentage of trials in which the participant’s final prediction 
agreed with the AI’s prediction. Accuracy was measured for the participant’s prediction 
before seeing any information from the AI, the AI’s prediction, and the participants final 
prediction after seeing the AI information. The results showed that confidence score can help 
calibrate trust in an AI model, whereas the local explanation had no effect on improving trust 
calibration and accuracy (Zhang et al. 2020). 
 
Given the similarity to our research interests, we based our experiment design largely on this 
study from Zhang et al.  
 
 

3. STUDY 1 
 
For Study 1, we tested the following research question:  

● What type of explanation impacts people’s perceived trust of an AI model and joint 
accuracy of AI-assisted predictions? 

 
For this study, we chose to focus on local explanations of an AI model. A local explanation 
describes the logic behind a specific, individual decision or recommendation from an AI, as 
opposed to the model-wide logic. We further narrowed our investigation to look at two types 
of local explanations: confidence score and data availability, which affect two aspects of 
expectation forming: external information and knowledge and understanding (Kocielnik et 
al. 2019). We chose to focus on confidence score because it is one of the most common types 
of information shown by AI systems and studied in XAI literature. This frequent use stems 
from confidence being a readily available metric from most AI models (known as F1 score), 
therefore it does not require additional engineering resources to surface to users in 
interfaces. While there has been prior research studies that have studied the effect of 
confidence on trust and trust calibration, most of this research shows confidence as a 
numeric value (a percentage). Given the likelihood percentages can be misinterpreted, we 
chose to pursue a categorical representation of confidence (high, medium, or low). We chose 
data availability as an explanation for the opposite reason: it is not a common explanation 
shown to users, however, industry guidelines (i.e. Google PAIR) and research (Lim & Dey 
2009) has suggested showing inputs or data sources can help users understand AI systems. 
Selecting explanations from both sides of the popularity spectrum as well as from two 
different aspects of expectation forming allows us to understand how different types of 
explanations impact trust calibration. 
 
 



In existing literature, there are two common ways to operationalize trust calibration: 1. 
overall accuracy of human participants + AI recommendations, and 2. Switch rate, or percent 
of the time when humans switch their responses based on the AI recommendation and 
explanation (Zhang et al. 2020). To answer the research question above, we tested the 
following hypotheses with a AI-assisted prediction task: 
 
Hypothesis 1 (​H1​): Final accuracy 

● H1a​. Participants in the confidence explanation condition will have higher accuracy 
than the control group (with no explanations). 

● H1b​.  Participants in the data availability explanation condition will have higher 
accuracy than the control group (with no explanations). 

 
Hypothesis 2 (​H2​): Final accuracy 

● Moreover, participants who experience the confidence explanations will have higher 
accuracy than those who experienced the data availability explanations.  

 
Hypothesis 3 (​H3​): Switch rate 

● Additionally, we hypothesize that the switch rate will be higher for the treatment 
groups (confidence and data availability) than for control. We do not hypothesize if 
one treatment group’s switch rate will be higher than the other.  

 
Hypothesis 4 (​H4​): Perceived trust 

● Finally, we hypothesize that the participants who see confidence explanations will 
have a higher trust in the AI helper than data availability explanations, as measured 
by an AI Helper survey (see next section). 

 
To test our hypotheses, we designed an AI-assisted prediction task wherein participants 
could achieve comparable performance to an AI model, but could perform most-optimally 
when calibrating appropriate trust of the AI model. We specifically selected a 
decision-making task in which the human participant and the AI helper would achieve best 
results when working together. 
 

 
3.1 Experimental Design 
 
3.1.1 Participants  
 
For Study 1, we recruited 89 participants from Amazon Mechanical Turk. The average age of 
participants was 40 years old. Forty-nine percent of participants were male, and 39% were 
female. Education level was as follows: 48% had a 4-year degree, 20% had some college 
experience, 10% had a 2-year degree, 9% had a professional degree, 7% were high school 
graduates, and 2% had a doctorate degree. The experiment was hosted as a survey on 
Qualtrics, and conducted through Mechanical Turk. 



 
3.1.2 Task and Materials 
 
In order to test trust calibration in decision-making scenarios, we created a fictional 
scenario in which participants would not have previous or existing knowledge that could 
influence their decisions. Furthermore, this task had both uncertainty and risk. The task was 
highly uncertain because many plants were not obviously part of one group or the other, and 
the risk was personally high because payment was contingent on accuracy. To this end, we 
created a fictional plant, with fictional therapeutic characteristics, purported to help 
scientists cure cancer. These characteristics included: 
 

● Size: large, medium-large, medium, medium-small, and small 
● Texture: fuzzy, thorny, rough, and smooth 
● Color: blue, white, yellow, and orange 
● Appearance: spotted, stripped, solid, and shiny 

 
The characteristics of the plants were sourced from a pre-existing data set of safe and 
unsafe mushrooms. The data set contains 22 characteristics for 23 species of mushrooms, 
and characteristics were renamed for the study. Utilizing this data set allowed us to have a 
ground truth to measure accuracy.  
 
Originally, the task required participants to decide whether a specific plant was likely to be 
safe or poisonous. However, while pre-testing we learned that when participants were unsure 
whether a plant was safe or unsafe, they erred on the side of unsafe to avoid real-world 
negative consequences. Therefore, for the final experiment, we changed the task so that 
participants decided whether a plant most likely belonged to Group X or Group Y, based on 
its characteristics (see reference guide below), thereby mitigating risk aversion. To ensure 
that elevated risk was still a factor, participants were told they were receiving payment 
based on their accuracy, so making an informed decision had real consequences. 
 
In order to aid participants with the decision-making process and avoid high cognitive load, 
we provided participants with the following reference guide on every question, for all 
treatment and control groups: 



 
Reference guide for plant characteristics, provided to participants on each question 

 
 
Treatment Tasks  
 
Participants saw a card that showed a plant’s characteristics. For each plant, participants 
answered “Is this plant in Group X or Group Y” twice. The first time they answered the 
question, referred to as their “baseline” decision going forward, they did not see the AI 
prediction and instead only had access to the reference guide. 
 

 
Card showing plant characteristics 

 
The second time they answered the question, referred to as their “final decision” going 
forward, participants saw the AI Helper’s recommendation for that specific plant, as well as 
additional information about the AI’s recommendation (confidence or a data availability 



explanation). In order to measure the effect that this additional information has on accuracy, 
we needed participants to answer the question twice: the baseline decision ​without​ the AI 
Helper and information, and the final decision ​with​ the AI Helper and information. This 
allows us to compare any changes in accuracy due to the additional information from the AI.  
 

 
Treatment 1: AI confidence information 

 
 

 
Treatment 2: AI data availability explanation 

 
 
Control task 
 
The control task required a baseline as well as final decision, but only presented the AI helper 
recommendation in the second step, without any additional information. 
 

 
Control: AI recommendation without additional information 

 
 
 
 



3.1.3 Design 
 
Within-subjects 
 
We originally conducted a within subjects experimental design, where each participant 
experienced a control condition, along with one of the two treatment conditions. The 
experiment consisted of two blocks of questions, with 30 questions total, in order; 15 control 
questions and 15 treatment questions. Questions in the control and treatment blocks were 
shown in a random order. All participants saw the same control and treatment questions.  
 
The structure of the experiment was thus: 

● Block 1: 15 control questions (AI Helper recommendation only) 
● Block 2: 15 treatment questions (AI Helper recommendation ​and​ explanation) 

 
Within each treatment group, there were three levels of explanations: high, medium, and low. 
For example, in the confidence condition the AI Helper would either have low, medium, or 
high level of confidence in its recommendation. For the data availability condition, the AI 
Helper would either have a high, medium, or low amount of similar plants to review in order 
to determine its recommendation. The block 2 questions were equally divided between the 
different levels: 5 questions that had high confidence/data availability, 5 questions that had 
medium confidence/data availability, and 5 questions that had low confidence/data 
availability. 
 
AI model and explanations 
To develop the AI Helper’s recommendation and explanation, we trained a model (at 73% 
accuracy) on the mushroom data. The final 15 questions were not randomly selected. We 
chose questions that had the same level (i.e. low, medium, or high) for both confidence and 
data availability. This is essential to determine the effect of explanation on trust calibration, 
as opposed to another factor, like the characteristic of the model or the plant itself.  
 
Between-subjects 
After collecting data, we saw that there was a statistically significant difference in accuracy, 
within subjects, between the baseline questions in the control condition and the treatment 
condition. Specifically, participants were less accurate on the baseline decisions for the 
control questions and were more accurate on the baseline questions for the treatment 
questions. This could mean that the control questions were harder than the treatment 
questions. Therefore, any changes we observe in the treatment conditions may be due to the 
difference in question difficulty, instead of our manipulation. To account for this, we 
conducted a between-subjects control group. The control condition was identical to the 
treatment groups, except that participants did not see any AI Helper explanation.  
 
 
 



Thus, the structure of the experiment was: 
● Block 1: 15 control questions (AI Helper recommendation only) 
● Block 2: 15 control questions (AI Helper recommendation only) 

 
3.1.4 Dependent Measures 
 
Final Accuracy 
Trust calibration, in part,  is operationalized as the accuracy of a joint human-AI decision. In 
both study 1 and study 2, this means average accuracy achieved by participants when 
making final decisions with information from an AI. If participants know when to trust the AI 
recommendation and when not to, it follows that they are likely to be more accurate overall. 
 
Switch Rate 
Trust calibration is also commonly operationalized as the percent rate at which humans 
switch their decisions to be in line with the AI decision. Further, we examine implications of 
this switching on overall accuracy. For example, a higher rate of switching might lead to 
better accuracy in cases where the AI Helper’s recommendation is correct. However, it could 
also lead to lower accuracy if participants are blindly trusting the AI Helper in cases where 
it’s recommendation is incorrect. Trust calibration is occuring in the former example, but not 
the latter. In both study 1 and study 2, this means targeting questions on which participants’ 
initial response was different from the AI Helper recommendation, and the participant 
switched their answer on their final decision. 
 
Disagreement accuracy 
Disagreement accuracy is the accuracy percentage of the questions where the AI helper and 
participants disagreed but the participants were right in their final decision. This would 
mean they calibrated correctly when to trust the AI helper and when to not trust it. 
 
Trust in the AI Helper 
Specific trust of the AI Helper used in the study was assessed using the same self-report 
scales adapted from the Merrit (2011) Trust Scale. The adaptations included substituting 
their reference to “AWD” to “AI Helper”, with additional text in the instructions making it clear 
that participants should respond to the questions keeping in mind the AI Helper they 
interacted with during the study. 
 
3.1.5 Additional Measures 
 
Explanation Satisfaction 
Satisfaction with the AI explanations was assessed using a survey was created by Hoffman 
et al.. (2018). They argue that measuring what explanations users choose (through attitudes 
like satisfaction) are critical to consider when building trust in AI systems; for example it’s 
possible that users may choose a shorter, less exhaustive explanation as preferable. 
Participants responded on a 5-point Likert-style scale from 1 (strongly disagree) to 5 



(strongly agree). An example item is “The explanations from the AI helper are useful to my 
goals.” 
 
Trust in AI Systems 
General trust of AI systems was assessed using self-report scales adapted from the Merrit 
(2011) Trust Scale. The adaptations included substituting their reference to “AWD” to “AI 
system” with additional text in the instructions giving examples of what AI systems could be 
(smart assistants like Google Home, Siri, as well as recommendations like Netflix and GPS 
navigation). Participants responded on a 7-point Likert-style scale from 1 (strongly disagree) 
to 7 (strongly agree). An example item is “I believe AI systems are competent performers.” 
 
 
3.2 Study 1 Results 
 
We used independent samples t-test to check if there is any significant difference between 
the treatment groups and control.  
 
3.2.1 Final Accuracy 
 
Final accuracy refers to the percentage of questions on which the participant was correct on 
their final decision. 
 

Condition Mean  

Control 77.85%  

AI Confidence 76.09%  

Data Availability 72.00%  

 
 

Condition P-value 

AI Confidence vs Control 0.38 

Data Availability vs Control 0.06 

Data Availability vs AI 
Confidence 

0.06 

 
 
We observed that there was no significant difference between AI confidence and control 
groups when looking at overall accuracy.  We can reject the H1a hypothesis. 



 
We also observed a borderline significance between the data availability condition and AI 
confidence condition for final accuracy, meaning participants were less accurate in the data 
availability condition when compared to the AI confidence condition. We also found a 
borderline significance between data availability explanations and control explanations, 
meaning participants in the data availability condition were less accurate than in those in 
the control condition. These findings mean that the H2 hypothesis can be partially 
supported. 
 
3.2.2 Switch rate 
 
Switch rate refers to the percentage of questions where participants were originally in 
disagreement with the AI helper and changed their answer on the final decision. 
 

Condition Mean  

Control 10.4% 

AI Confidence 13.3% 

Data Availability 15.5% 

 
 

Condition P-value 

AI Confidence vs Control 0.42 

Data Availability vs Control 0.12 

Data Availability vs AI 
Confidence 

0.56 

 
We observed that there was no significant switch rate between AI confidence and control. 
We also found no significant difference between data availability and AI confidence. However, 
we found borderline significance between data availability and control, meaning that 
participants in the data availability condition switched more often than those in the control 
condition. H3 was partially supported. 
 
3.2.2 Trust in the AI Helper 
 
Trust in the AI helper was measured using a scale from 1 to 7.   



 

Condition Mean 

Control 5.67  

AI Confidence 5.24  

Data Availability 5.41 

 
 

Condition P-value 

AI Confidence vs Control 0.11 

Data Availability vs Control 0.30 

Data Availability vs AI 
Confidence 

0.56 

 
 
We observed that there was no significant difference in AI trust between data availability and 
control.  We also found no significant difference between data availability and AI confidence. 
We found borderline significance between AI confidence and control, meaning participants 
trusted the AI confidence explanation less than participants in the control condition.  H4 can 
be rejected. 
 
3.2.3 Disagreement accuracy 
 
Disagreement accuracy is the percentage of the questions where the AI helper and 
participants disagreed but the participants were right in their final decision. 
 

Condition Mean 

Control 66.6%  

AI Confidence 65.3%  

Data Availability 52.3% 

 
 
 
 
 
 



Condition P-value 

AI Confidence vs Control 0.85 

Data Availability vs Control 0.02 

Data Availability vs AI 
Confidence 

0.04 

 
 
We observed that there was no significant difference in disagreement accuracy between AI 
confidence and control conditions.  However, we found significant differences between both 
data availability and AI confidence versus control conditions. This means that participants 
in both the control and AI confidence conditions were significantly more likely to have 
correct answers in the case of disagreement compared to the Data Availability condition.  
 
 

4. STUDY 2 
 
Given the results from Study 1, we hypothesized that participants did not find the need to 
rely on the AI Helper because their accuracy alone (70-72%) was essentially the same as the 
model’s accuracy (73%). Therefore, would explanations become more salient if participants 
did not feel as competent in the decision-making task? Existing research shows that when 
users feel less competent they are more likely to rely on AI (Parasuraman & Riley 1997).  
 
Therefore, our research question for study 2 is:  

● When humans have low self-competence in their ability to complete a task, how do 
explanations of AI predictions impact people’s perceived trust of an AI model and 
joint accuracy of AI-assisted predictions? 

 
To answer the research question above, we conducted another experiment that was identical 
to Study 1, but we manipulated participant self-competence to be low. 
 
 
Hypothesis 1 (​H1​): Final accuracy 

● H1a​. Participants in the confidence explanation condition will have higher accuracy 
than the control group (with no explanations). 

● H1b​.  Participants in the data availability explanation condition will have higher 
accuracy than the control group (with no explanations). 

 
Hypothesis 2 (​H2​): Final accuracy 

● Moreover, participants who experience the confidence explanations will have higher 
accuracy than those who experienced the data availability explanations.  



 
Hypothesis 3 (​H3​): Switch rate 

● Additionally, we hypothesize that the switch rate will be higher for the treatment 
groups (confidence and data availability) than for control. We do not hypothesize if 
one treatment group’s switch rate will be higher than the other.  

 
Hypothesis 4 (​H4​): Perceived trust 

● Finally, we hypothesize that the participants who see confidence explanations will 
have a higher trust in the AI helper than data availability explanations, as measured 
by an AI Helper survey (see next section). 

 
To test our hypotheses, we utilized the same AI-assisted prediction task from Study 1 
wherein participants could achieve comparable performance to an AI model, but could 
perform most-optimally when calibrating appropriate trust of the AI model. We hypothesized 
that the switch rate in study 2 will be higher than the switch rate in study 1 for both 
treatment groups given the competence manipulation. 
 
 
4.1 Experimental Design 
 
4.1.1 Participants 
 
For Study 2, we recruited 92 participants from Amazon Mechanical Turk. The average age of 
participants was 41 years old. Forty-four percent of participants were male, and 47% were 
female, with one participant declining to answer. Education level was as follows: 42% had a 
4-year degree, 18% had some college experience, 15% had a 2-year degree, 5% had a 
professional degree, 18% were high school graduates, and 0% had a doctorate degree. The 
experiment was hosted as a survey on Qualtrics, and conducted through Amazon 
Mechanical Turk. 
 
4.1.2 Task and materials 
 
The scenario of the task in study 2 was identical to study 1 (i.e. fictional plant, participants 
needed to decide if the plant was part of Group X or Group Y, based on information from a 
reference guide containing plant characteristics).  
 
The treatment tasks were identical to the treatment tasks in Study 1. 
 
4.1.3 Design 
 
Between-subjects 
 
For study 2, we conducted between-subjects experimental design, meaning there were 2 
treatment groups and a control group. The experiment consisted of two blocks of questions, 



with 30 questions total, in order; 15 baseline questions and 15 treatment questions. 
Questions in the control and treatment blocks were shown in a random order. All 
participants saw the same control and treatment questions.  
 
There were two notable differences between Study 1 and Study 2. First, participants 
experienced a manipulation that lowered their self-confidence in the task, halfway through. 
This manipulation stated that their accuracy on the previous 15 questions was “below 
average”, and they were shown a bell curve, with their accuracy presented in the lower half. 
Second, for the first block of 15 questions, participants did not see the AI Helper. By 
manipulating participant self-confidence ​before​ introducing the AI Helper, we removed the 
possibility of undermining participant trust in the AI Helper. 
 
Treatment design 
 
The treatment conditions were identical to Study 1. Taken with the information above, the 
structure of the treatment experiments was: 

● Block 1: 15 baseline questions (no AI Helper nor explanation) 
● Block 2: 15 treatment questions (AI Helper recommendation ​and​ explanation) 

 
Again, within the treatment questions, there were three levels of explanations (low, medium, 
high), with 5 questions of each type. 
 
Control design 
 
The only difference in the control condition was that participants only saw the AI Helper 
recommendation in the second block of questions; they did not see an explanation. 
 
The structure of the control condition was: 

● Block 1: 15 baseline questions (no AI Helper nor explanation) 
● Block 2: 15 control questions (AI Helper recommendation only) 

 
4.1.4 Measures 
 
The measures for Study 2 are the same as Study 1: final accuracy, switch rate, disagreement 
accuracy, trust in AI helper, explanation satisfaction, and trust in AI systems.  
 
 
4.2 Study 2 Results 
 
We used independent samples t-test to check if there is any significant difference between 
the treatment groups and control.  
 



4.2.1 Final Accuracy 
 
Final accuracy refers to the percentage of questions on which the participant was correct. 
 

Condition Mean  

Control 75.0%  

AI Confidence 75.1%  

Data Availability 73.0%  

 

Condition P-value 

AI Confidence vs Control 0.94 

Data Availability vs Control 0.58 

Data Availability vs AI 
Confidence 

0.56 

 
We observed that there was no significant difference between AI confidence and control 
groups.  We can reject the H1a hypothesis. 
 
We also observed that there was no significant difference between Data Availability and 
control as well as AI confidence groups. We can reject the H1b and H2 hypotheses. 
 
4.2.2 Switch rate 
 
Switch rate refers to the percentage of questions where participants were originally in 
disagreement with the AI helper and changed their answer on the final decision. 
 

Condition Mean  

Control 11.0% 

AI Confidence 12.3% 

Data Availability 19.0% 

 
 
 
 



Condition P-value 

AI Confidence vs Control 0.42 

Data Availability vs Control 0.04 

Data Availability vs AI 
Confidence 

0.02 

 
We observed that there was no significant switch rate between AI confidence and control. 
We also found no significant difference between data availability and AI confidence.  
 
We found a significant difference in switch rate between data availability and control, 
meaning participants in the data availability condition who originally disagreed with the AI 
helper recommendation, more often switched their answer on the final decision, when 
compared to the control condition. H3 was fully supported. We also found a significant 
difference in switch rate between data availability and AI confidence. Participants switched 
at a higher rate in the data Availability condition, when compared to the AI confidence 
condition.. 
 

 
Box plot for switch percentage between the conditions 

 
 
 
 
 
 
 
 



4.2.3 Trust in the AI Helper 
 
Trust in the AI Helper was measured on a scale from 1 to 7.  
 

Condition Mean  

Control 4.98 

AI Confidence 4.96 

Data Availability 5.3 

 

Condition P-value 

AI Confidence vs Control 0.93 

Data Availability vs Control 0.26 

Data Availability vs AI 
Confidence 

0.28 

 
We observed that there was no significant difference in AI trust between Data availability 
and control.  We also found no significant difference between Data availability and AI 
confidence as well as control.  H4 can be rejected. 
 
 
4.2.4 Disagreement accuracy 
 
Disagreement accuracy is the percentage of questions where the AI helper and participants 
disagreed but the participants were right in their final decision. 
 

Condition Mean 

Control 54.9% 

AI Confidence 65.3% 

Data Availability 56.3% 

 
 
 
 
 



Condition P-value 

AI Confidence vs Control 0.33 

Data Availability vs Control 0.34 

Data Availability vs AI 
Confidence 

0.85 

 
We observed that there was no significant difference in disagreement accuracy between AI 
confidence and control conditions. We also observed no significant difference between data 
Availability and AI confidence/control group.  
 
 

5. EXPERIMENT DISCUSSION 
 
Although our results did not support many of our hypotheses, they did provide insight into 
how people approach decision-making with artificial intelligence. We conclude that different 
types of explanations do impact how people behave towards AI decision-making 
partnerships. Certain explanations are more effective than others, while others can be 
detrimental to trust calibration. How these different types of explanations are acted on can 
also depend on how competent users feel when interacting with AI.  
 
Confidence score led to higher accuracy than the data availability explanation, but 
confidence score had the same accuracy as the control group. These results may indicate 
that explanations aren’t as critical in certain situations. The scenario tested in the 
experiment was one in which the AI model and participants performed at about the same 
accuracy rate. Furthermore, participants were told they have the same information as the AI. 
As a result, it could be that in scenarios where the AI seems to have the same competence 
and doesn’t offer any additional information to the human, people do not pay attention to 
explanations from the AI. Another potential explanation for the increase in accuracy 
compared to data availability is that confidence score is a more direct representation of 
reliability, whereas the data availability explanation is more indirect, requiring the 
participant to interpret the explanation and infer the reliability of the prediction. We suspect 
that data availability may have led to increased understanding of the system as it provided 
more insight into the rationale behind the prediction compared to the confidence value, 
however further research should confirm this hypothesis.  
 
Interestingly, the data availability explanation seemed to inhibit trust calibration. After 
participants saw the data availability explanation, in particular, they were significantly more 
likely to switch their final decision to match the AI recommendation, when compared to 
confidence score and control. The tendency to switch was magnified when participants saw 
the low self-competence manipulation. We saw that in Study 1 the switch rate was borderline 



significant, however when lowering participants’ self-competence in Study 2, the switch rate 
became significant. Lowering self-competence appears to stimulate people’s willingness and 
inclination to lean on the AI recommendations, at least when seeing certain types of 
explanations. We hypothesize that data availability may have created perceptions that the 
system is more capable than it is, resulting in overtrust or misuse. This desire to rely on AI 
recommendations occurs despite causing harm to the participant’s accuracy (as we saw in 
Study 1). This finding has powerful implications when considering the multitude of instances 
where AI is providing recommendations in high stakes situations.  If users don’t feel 
competent, they might overly rely on AI to the detriment of themselves and others affected 
by their decisions. 
 
The implications from the switch rate finding is also relevant to industry product 
development. We hypothesized that switch rate is indicative of indecision, and a perceived 
sense of low self-competence. Users with low self-competence are often novice users who 
may misuse AI, relying on it uncritically and trusting it in cases they shouldn’t. This finding 
is especially relevant in high stakes scenarios, where AI-assisted decision outcomes have a 
significant impact on human lives. One example for this is a risk-recidivism tool developed 
by a private company that uses AI to assign risk scores to defendants in order to predict how 
likely they are to reoffend. Angwin et al. (2016), from Propublica, revealed that the machine 
learning underlying the system was biased, wrongly labelling black defendants as future 
criminals at a rate twice that of white defendants. One of the judges interviewed in this 
report stated that the scores were more helpful to them when they were a new judge. This 
leads to the plausible scenario that an inexperienced judge who is a novice user of this tool, 
may overly rely on this biased system with ineffective explanations when making crucial 
decisions about people’s futures. In this recidivism example, often judges do not understand 
the bias inherent in the AI model, but given an appropriate explanation that makes this bias 
clear, they could better detect issues of fairness and make more informed decisions, 
calibrating their trust (Dodge et al. 2019). However, if novice judges are shown explanations 
that are not helpful for trust calibration and may inflate the perception of capability of the 
system, their misuse of the system can increase. This implication demonstrates why 
understanding a user’s context, questions, and domain is crucial for designing effective 
explainable interfaces.  
 
 

6. LIMITATIONS AND FUTURE WORK 
 
There were certain limitations for our work. One limitation was in the design of the scenario 
and model accuracy. As mentioned previously, participants had a similar accuracy rate of 
the trained AI model. This potentially caused them to not rely on the explanations in Study 1, 
therefore limiting the necessity of trusting the AI recommendation. Future work could 
examine what explanations are helpful for trust calibration when model accuracy is higher. 
Another limitation of our study is that participants were not experts in the domain. In a true 



human-AI partnership, the human has unique, complementary knowledge to contribute. This 
may explain the lack of results we saw in final accuracy, which can depend on the ability of 
the human to bring in unique knowledge to complement the AI’s errors. In order to remove 
the risk of choosing a scenario participants had previous experience with, we opted for a 
fictional scenario. However, future work could investigate the effect of explanations in 
real-world situations where humans are domain experts, versus novices. 
 
Additionally, we used text-based explanations with categorical levels. It is possible other 
types of design such as visualizations or interactivity for the explanation may show different 
results. As discussed in the introduction, there are many ways of approaching a single 
explanation type. For example, many products show confidence as a percentage, or a letter 
grade. Therefore, we were limited in testing one expression of each information type in our 
experiment. 
 
There were many directions our research could take which future work can address. Starting 
with the experimental design, there is potential to follow-up on how the sequence of events 
could change people’s trust calibration. For example, if participants saw the AI 
recommendation first, before making an initial decision, the explanations could have a 
different effect on trust calibration than our study observed. Another interesting avenue of 
research could be to look at the effect of risk on decision-making with AI. Research shows 
that under conditions with high risk, trust becomes essential, and in some cases, can lead to 
an increased reliance on AI (Lyons & Stokes 2012). Therefore, raising the level of risk along 
with showing explanations could affect trust calibration.  
 
Future work could further explore our specific findings in this paper from a qualitative 
perspective. For instance, a qualitative study could delve deeper into why data availability 
explanations in particular led participants to lower accuracy and higher switch rates. There 
is also potential for future research to investigate the effect of other explanations, in 
addition to the ones in this study. Specifically, counterfactual and example-based 
explanations are gaining interest in the Explainable AI field (Liao et al. 2020). However, there 
is limited research on the effect of these types of explanations on trust calibration. 
 
 

7. EXPLAINABLE AI RESOURCE  
 
7.1 Background and Related Work 
 
With increasing societal pressure for explanations and legislation like GDPR’s right to 
explanations, it’s no longer a question of ‘if we should explain AI models’, but how and when 
we explain. However, the context of use is essential to take into account when designing 
explanations. As we found from our experiment, there are contexts when perhaps an 
elaborate explanation works against trust calibration, but there are certainly contexts in 



which explanations are essential for calibrating trust. With this nuance and complexity in 
mind, we created a resource for industry designers with the goal of helping them create 
effective explanations for AI systems.  
 
The role of creating effective explanations often falls to UX design practitioners who bridge 
the gap between the people using the product (“users”) and the product team (including data 
science and engineers). Their challenge is to create design solutions accounting for 
demands and constraints coming from users, the product team, and other stakeholders. 
Both industry and academic researchers have conducted empirical research and developed 
insights for explainable AI, but each have their limitations.  
 
Among the leaders in the industry space are IBM Research, Google’s People + AI, and 
Microsoft. IBM produced​ ​Design for AI, ​which is a broad set of design guidelines. Although 
unstated, its intended audience appears primarily to be design practitioners for the purpose 
of educating them broadly on what artificial intelligence is, and the implications this holds 
for design. This guide has an extremely broad approach to the field; starting with a broad 
introduction, how to use design thinking within a team working on an AI system, followed by 
fundamentals of artificial intelligence. While the broad approach is initially helpful, it leads 
designers wanting more concrete approaches for designing interfaces involving AI. The guide 
does get specific in only one section focused on designing chatbots. For example, it provides 
guidance on practical applications for bots (when to use them, when not to use them), as 
well as components to consider when building the bot itself (conversational understanding, 
intent, repair). This level of granularity is what is lacking in many industry best practices, so 
Design For AI​ would benefit from expanding to include this level of granularity for other AI 
products. 

The People + AI research team at Google takes a different approach. They produced a 
guidebook that offers very broad guidance for developing AI in ‘human-centered’ ways. It is 
divided into six chapters, each focusing on a specific consideration (i.e. explainability + 
trust, mental models, etc.). The guidebook is principle-led, and seems intentionally broad so 
that product teams can take the concepts and apply them to specific use-cases. However, 
the guidebook seeks to make these principles more tangible for the end user by providing 
examples from Google’s product suite, as well as short worksheets after every section. While 
the guidebook attempts to deliver a succinct and digestible ‘how to’ for designers, it lacks 
the granularity necessary to be a useful resource for designers. 

Microsoft Research proposed and tested 18 design guidelines for AI systems, in an effort to 
offer practitioners with generally applicable heuristics by which to evaluate observable “AI 
infused” interfaces (Amershi et al. 2019). The 18 guidelines are divided between stages of user 
interaction in which each is most relevant (i.e. initial interaction, during a single interaction, 
when something goes wrong, and across interactions over time), with accompanying 
examples from products (i.e. voice assistants, e-commerce, autocomplete, 
recommendations, etc). The guidelines are coupled with examples of how they may be 



applied to various products. While comprehensive, only a few guidelines refer to 
explainability: (1) Make clear what the system can do, (2) Make clear how well the system can 
do what it can do, (3) Show contextually relevant information, and (4) Make clear why the 
system did what it did (Amershi et al. 2019). These guidelines provide a strong starting point 
but lack actionable guidance on how to apply it to different products and scenarios than 
those listed.  

Academic research is often at the granularity that designers desire, however the focus areas 
and academic paper format likely impede non-academic audiences, and more specifically 
UX practitioners, from consuming the content. A lot of the work in AI and ML communities 
tend to suffer from a lack of usability, practical interpretability, and efficacy on real users 
(Abdul et al. 2018). The model-centric approach is evident in Explainable AI literature, 
resulting in papers laden with AI and ML jargon that reduces the comprehensibility for those 
who are not data scientists, despite having insights applicable to UX practitioners. Liao et al. 
explored explainability from a user’s perspective by creating a question bank and 
interviewing current UX professionals on their experience encountering these questions 
from users. Their findings provided concrete strategies for exploring various types of 
questions and explanations that can be used to aid explainability in AI products, however, 
some of these strategies can be difficult to envision (Liao et al. 2020). From our interviews 
with professionals, we found that searching academic papers at the start of a project is not 
typical for industry designers, locking away essential, helpful knowledge and highlighting a 
need for a more approachable format. 

 
7.2 Design Approach  

Little is known about how to put techniques from research into practice, especially when 
bridging user needs and technical capabilities (Liao et al. 2020). The need for a resource that 
can not only connect academic research to industry but also provide more actionable 
insights was voiced in our early interviews with designers who work on AI products or 
guidelines. Therefore our primary goal for the website was to create a resource that informs 
and empowers UX designers when designing explainable interfaces. In deciding what 
content to feature on the website, we synthesized findings from a wide array of academic 
and industry resources and emphasized common threads.  We leveraged the granularity of 
academic research and the practicality of industry resources to create an accessible and 
usable resource for UX designers and AI product teams to experiment with, break, and 
collaborate on creating explainable interfaces. 

 

 
 
 



7.3 Website 
 
Our online resource seeks to surface critically informative, granular information otherwise 
buried in academic papers, in an approachable way that is more inline with current industry 
guidelines. The website is divided into sections, working from a broad overview of AI to a 
tangible brainstorming tool.  

 
Homepage of uxai.design 

 
The AI Basics section covers how AI functions on logic to different types of machine learning 
and an overview of AI applications and decision aids. Given most products currently use, or 
likely will use AI, it is increasingly important for designers to be familiar with basic AI 
concepts.  
 
Next, we introduce Explainable AI with a case study of why explanations matter, 
accompanied by industry resources. The design strategy section that follows, outlines our 
proposed approach, based on an extensive literature review demonstrated in this paper. This 
section starts by recommending designers identify and understand their users, the context 
in which they may need explanations, and what types of questions they are likely to have 
about the AI system. Then it moves on to technical considerations in asking and answering 
questions and ends with methods to assess and evaluate these explanations.  
 



 
Example cards from the design strategy section, giving insight into different user groups, contexts,  

questions, and explanation types (not pictured) that designers should consider in the process. 

 
Finally, we unveil the brainstorming cards, where we introduce the AI decision aid scenario 
that underpins all of the example explanations. The decision aid scenario is similar to the 
experiment in this paper, where an AI helper recommends a plant is safe or poisonous, but 
the user makes the final decision. While only one scenario is provided on the website, this 
tool can help designers brainstorm how to create effective explainable interfaces for various 
scenarios with their cross-functional AI teams. We finish the website with a glossary of 
terms and concepts in AI and explainability. 
 



 
Example expanded brainstorming card, pairing a question with  

a potential explanation type (feature importance). 

 
 

7.4 Usability testing 
 
The purpose of usability testing was to collect feedback on the usability interactive 
elements, the legibility of the content (appropriate and understandable terms, etc.), the logic 
of the information architecture, and whether or not participants would utilize the website as 
a tool in their own practice. Specifically, we wanted to understand if: 
 

1. Designers could learn about AI and XAI through our resource 
2. Our toolkit would be a useful addition to their workplace 

 
We employed qualitative usability testing as a means to address the rationale above. The 
focus of qualitative usability testing is to understand how participants perceive the user 
interface, and then deliberately probe to understand why. We asked each participant several 
simple prompts throughout each section of the website, then allowed participants to explore 



the prototype naturally, while thinking out loud, to discover how intuitive the features and 
language were. 
  
Participants included 3 UX designers with experience designing AI products at large 
technology companies. One participant had additional experience of creating AI design 
guidelines, specifically for explainability and trust. They were selected from the researchers 
personal networks. 
 
From testing, we gathered many insights that were incorporated into the design of the 
current website, three of which are explored below. First, we changed language throughout to 
be less technical, and in areas where technicality was needed, we clearly defined those 
terms. This change was based on the finding that our language was not accessible enough. 
For example, one participant said “I don’t know what Explainable AI -- is that a noun?”, which 
clearly indicated they didn’t understand the terminology that is central to our resource. 
Another insight was that participants were looking for the combination of a hook, explaining 
why Explainable AI matters, as well as a clear understanding of how they will personally 
benefit from our website. Therefore, in the updated version of the website, we include a case 
study of the self-driving car accident in Tempe, Arizona, as well as a brief history to illustrate 
the impact XAI can have. The final impactful insight was that although all participants were 
excited when they discovered the resource page, they all requested that this be front and 
center since these tools are what matter most for designers. As one participant said, “you are 
burying the lead” by having the cards come last. To address this, we included the 
brainstorming cards earlier in the website, integrated throughout the design strategy 
section. 
 

 
7.5 Future Work 

 
Future work includes more usability testing with a broader audience. In our initial study we 
chose designers who work on AI products at large technology companies, however, we are 
curious to test our site with designers from smaller start-ups as well as designers with little 
to no experience with AI. We are also interested in hosting an ideation workshop with 
cross-functional teams to study the effectiveness of our brainstorming tool: what works, 
what doesn’t work, and what is missing. Finally, we intend to refine the website to include 
more visual aids and interactivity and add scenario cards to the toolkit to facilitate learning.  
 
 

CONCLUSION 
 
Our project contributes to the ongoing conversation about accountability, transparency, and 
explainability of artificial intelligence in several ways. First, we provided empirical evidence 
whether explanation interfaces are actually understandable, usable, or practical in 



real-world situations. Specifically, we uncovered an instance wherein an explanation can 
nudge people in the wrong direction, which degrades trust calibration and demonstrates 
how important contextual understanding is for designers of AI products. It challenges the 
notion that any explanation is better than no explanation for trust calibration. Second, we 
built a bridge between research and industry, turning research such as our experiment into a 
design exercise and inviting UX professionals to engage in this dialogue with their 
cross-functional teams. We also provided tools for designers to explore how to integrate 
explainable AI in their work. Our contributions to the human-side of explanation is important 
especially given that in AI-assisted decision making, we are not designing products -- we are 
designing relationships. 
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