





### Predicting Drug Interactions







Quazi Fairooz Jonathan Tran Matt Kirk Elio Qarri Michael Jaweed

# Our Team









Jonathan Tran

Matt Kirk







Elio Qarri


#### **Michael Jaweed**

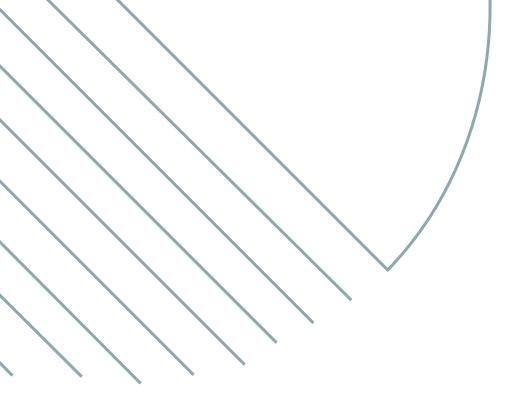




Kairós is a web app that uses machine learning to predict adverse drug interactions, providing real-time insights to prevent harmful side effects and enhance safety.








## The FDA estimates **2 million serious adverse drug events** and 100,000 deaths annually in the U.S. due to drug interactions.









# MVP Demo















# 

## Target Users Individuals taking prescription or over-the-counter medications

A person wants to determine if a new metabolism booster could adversely affect their health while using a specific antibiotic.

A diabetic person seeks to understand if their current prescription will interact with a new supplement they are considering.

## Market Research

| Competitors | Target Users                | Uses ML | User Data | OCR          |
|-------------|-----------------------------|---------|-----------|--------------|
| WebMD       | Consumers                   | $\sim$  |           | $\mathbf{x}$ |
| Drugs.com   | Consumers                   |         |           |              |
| Medscape    | Consumers /<br>Medical Pros |         |           |              |
| AlphaFold3  | Scientists                  |         |           |              |
| Kairos      | Consumers                   |         |           |              |

Kairós is the only tool that integrates ML modeling, User Data, and OCR into one simple to use platform.



## DATA SOURCES & EDA

**Size:** 192,347 drug-to-drug interaction pairs **Split:** Train (70%), Validation (15%), Test (15%)

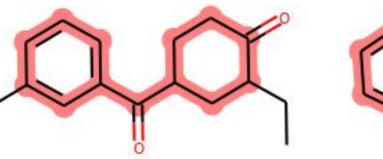
Target Variable: Boolean for:

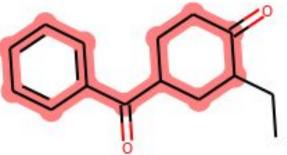
- Acetylation
- Amidation
- Hydrolysis of Amide

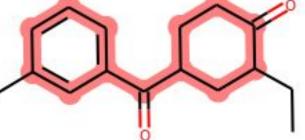










#### ChEMBL


#### **NIH Dietary Supplements**

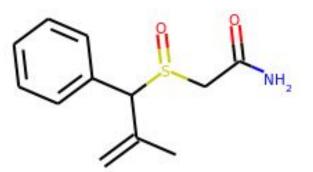
## **Reaction Modeling**

|        |          | Canonical Smiles                               |                     |          | Canonical Smiles                               |              | RDKit Reaction            |
|--------|----------|------------------------------------------------|---------------------|----------|------------------------------------------------|--------------|---------------------------|
|        | Drug1_ID | Drug1                                          | drug1_name          | Drug2_ID | Drug2                                          | drug2_name   | acetylation_reaction_flag |
| 0      | DB00855  | NCC(=O)CCC(O)=O                                | Aminolevulinic acid | DB00460  | COC(=0)CCC1=C2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C | Verteporfin  | 1                         |
| 1      | DB09536  | O=[Ti]=O                                       | Titanium dioxide    | DB00460  | COC(=0)CCC1=C2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C | Verteporfin  | 0                         |
| 2      | DB09536  | O=[Ti]=O                                       | Titanium dioxide    | DB00460  | COC(=0)CCC1=C2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C | Verteporfin  | 0                         |
| 3      | DB01600  | CC(C(O)=O)C1=CC=C(S1)C(=O)C1=CC=CC=C1          | Tiaprofenic acid    | DB00460  | COC(=0)CCC1=C2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C | Verteporfin  | 1                         |
| 4      | DB09000  | CC(CN(C)C)CN1C2=CC=CC=C2SC2=C1C=C(C=C2)C#N     | Cyamemazine         | DB00460  | COC(=0)CCC1=C2NC(\C=C3/N=C(/C=C4\N\C(=C/C5=N/C | Verteporfin  | 0                         |
| •••    |          |                                                |                     | •••      |                                                |              |                           |
| 185402 | DB00281  | CCN(CC)CC(=O)NC1=C(C)C=CC=C1C                  | Lidocaine           | DB06708  | CCCCN(CCCC)CC(0)C1=C2C(=CC(CI)=C1)\C(=C/C1=CC= | Lumefantrine | 1                         |
| 185403 | DB01088  | [H][C@]12C[C@@H](O)[C@H](\C=C\[C@@H](O)C(C)CC# | lloprost            | DB01235  | N[C@@H](CC1=CC(O)=C(O)C=C1)C(O)=O              | Levodopa     | 1                         |
| 185404 | DB00857  | CN(C\C=C\C#CC(C)(C)C)CC1=CC=CC2=CC=C12         | Terbinafine         | DB00196  | OC(CN1C=NC=N1)(CN1C=NC=N1)C1=C(F)C=C(F)C=C1    | Fluconazole  | 0                         |
| 185405 | DB00734  | CC1=C(CCN2CCC(CC2)C2=NOC3=C2C=CC(F)=C3)C(=O)N2 | Risperidone         | DB02703  | [H][C@@]12C[C@@H](O)[C@@]3([H])[C@@]4(C)CC[C@@ | Fusidic acid | 0                         |
| 185406 | DB00356  | CIC1=CC2=C(OC(=O)N2)C=C1                       | Chlorzoxazone       | DB00934  | CNCCCC12CCC(C3=CC=CC=C13)C1=CC=C21             | Maprotiline  | 0                         |



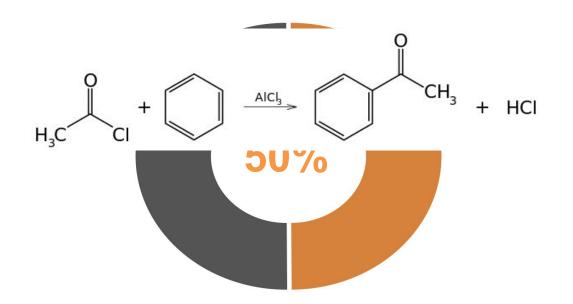


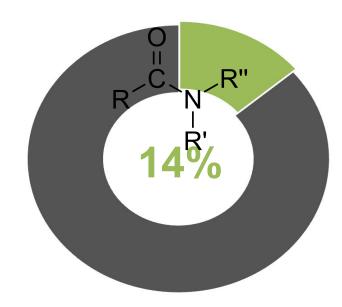



clccc(CC2CCCC2)cc1



Open-Source Cheminformatics and Machine Learning

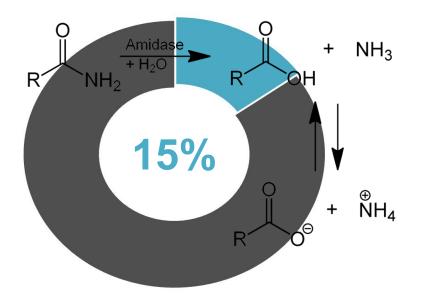

#### clccc(CC2CCCC2)cc1


clcccccl



## Type of Reactions

### Acetylation






Amidation

Each reaction is generated with a different reaction template, resulting in 3 sets of target variables with different class distributions

### Hydrolysis of Amide





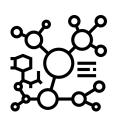


## **Feature Selection**

|   |                      | Rou  | ite of Administr | ation   |       | Molecular      | Hydrogen Bond<br>Acceptor / Donor |     |     |
|---|----------------------|------|------------------|---------|-------|----------------|-----------------------------------|-----|-----|
|   | name                 | oral | parenteral       | topical | alogp | aromatic_rings | full_molecular_weight             | hba | hbd |
| 0 | LISINOPRIL ANHYDROUS |      |                  |         | 1.24  | 1              | 405.5                             | 5   | 4   |
| 1 | NAPROXEN             |      |                  |         | 3.04  | 2              | 230.26                            | 2   | 1   |
| 5 |                      |      |                  |         |       |                |                                   |     |     |

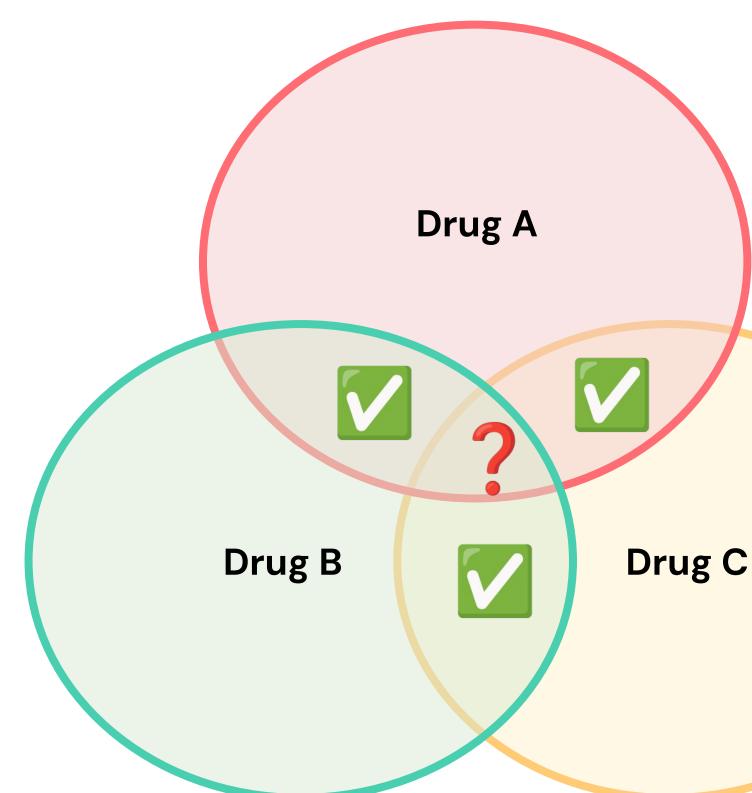





















Guided screen for synergistic three-drug combinations: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347197/ Design of high-order antibiotic combinations against M. tuberculosis by ranking and exclusion: https://www.nature.com/articles/s41598-019-48410-y Systematic exploration of synergistic drug pairs: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261710/

## ML PIPELINE

#### DATA PREP

<u>(</u>)

ĊĊ

- Dataset Ingestion
- Data Preprocessing
- Feature Engineering / Selection



• Model Selection



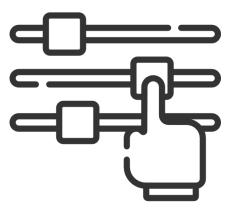
- Model Training
- Hyperparameter Tuning

### MODEL TESTING

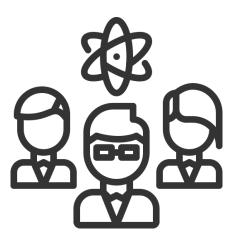
- Model Evaluation
- Model Selection






## Model Results

| Reaction      | Model               | Mean F2 | Score | Mean F1 S | Score | Mean PR AUC |       |  |
|---------------|---------------------|---------|-------|-----------|-------|-------------|-------|--|
|               |                     | Val     | Train | Val       | Train | Val         | Train |  |
| Acetylation   | XGBoost             | 0.995   | 0.996 | 0.996     | 0.997 | 0.997       | 0.999 |  |
|               | Random Forest       | 0.973   | 0.999 | 0.965     | 0.999 | 0.971       | 0.999 |  |
|               | SVM                 |         | 0.803 | 0.789     | 0.793 | 0.839       | 0.842 |  |
|               | Logistic Regression | 0.620   | 0.611 | 0.643     | 0.633 | 0.747       | 0.738 |  |
| Amidation     | on XGBoost          |         | 0.990 | 0.983     | 0.990 | 0.989       | 0.998 |  |
|               | Random Forest       | 0.954   | 0.949 | 0.939     | 0.935 | 0.982       | 0.980 |  |
| Hydrolysis of | XGBoost             | 0.993   | 0.989 | 0.993     | 0.990 | 0.993       | 0.997 |  |
| Amide         | Random Forest       | 0.853   | 0.827 | 0.88      | 0.862 | 0.903       | 0.951 |  |


## Best Models vs Test Data

| Reaction               | Model   | Mean  | Mean F2 Score |       |       | F1 Score |       | Mean PR AUC |       |       |  |
|------------------------|---------|-------|---------------|-------|-------|----------|-------|-------------|-------|-------|--|
|                        |         | Test  | Val           | Train | Test  | Val      | Train | Test        | Val   | Train |  |
| Acetylation            | XGBoost | 0.996 | 0.995         | 0.996 | 0.996 | 0.996    | 0.997 | 0.997       | 0.997 | 0.999 |  |
| Amidation              | XGBoost | 0.990 | 0.988         | 0.990 | 0.991 | 0.983    | 0.990 | 0.992       | 0.989 | 0.998 |  |
| Hydrolysis of<br>Amide | XGBoost | 0.992 | 0.993         | 0.989 | 0.992 | 0.993    | 0.990 | 0.993       | 0.993 | 0.997 |  |



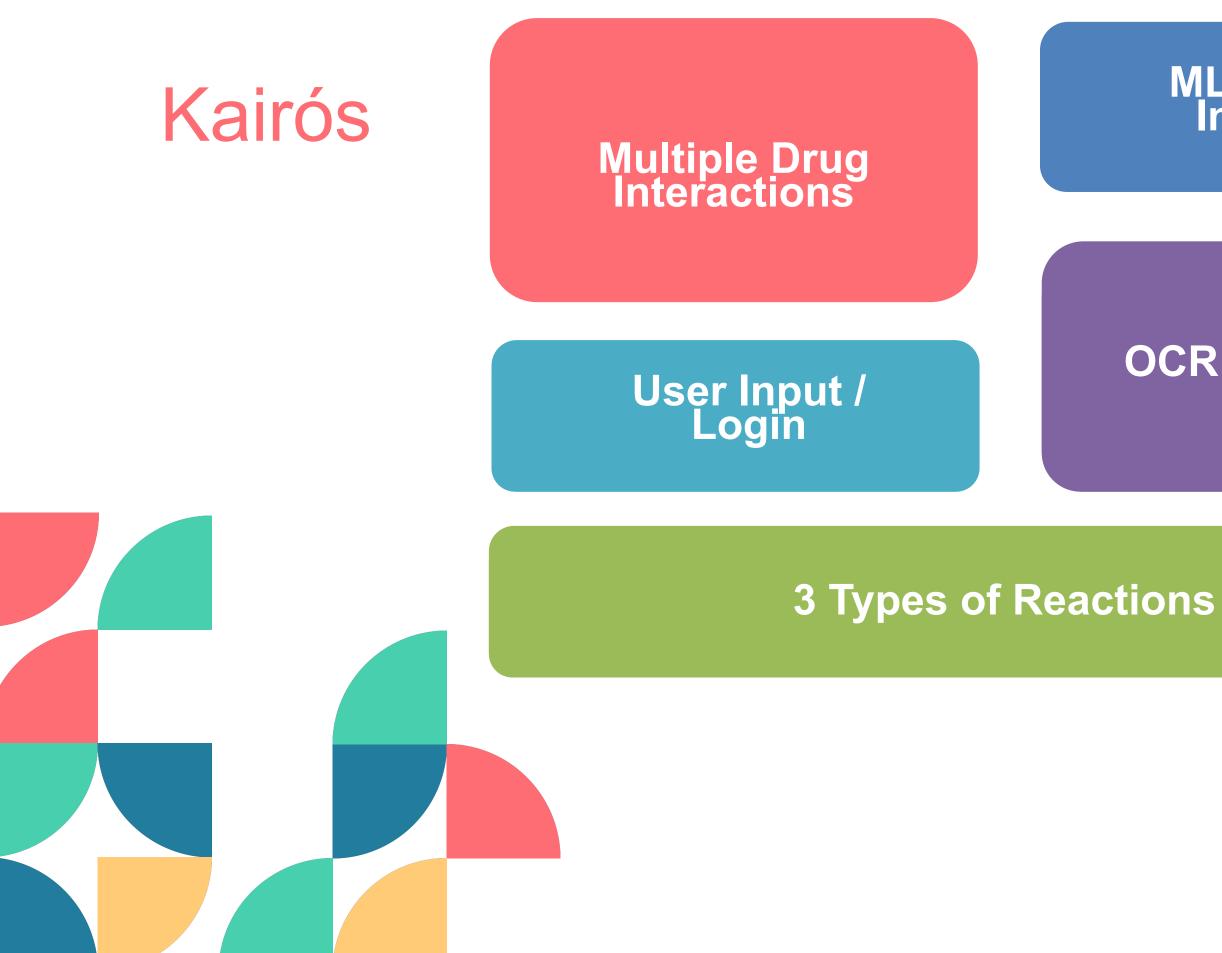






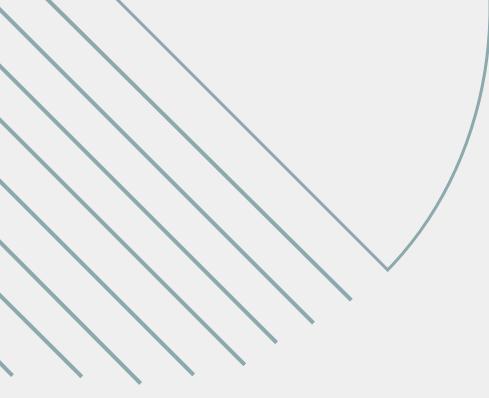
## Future Enhancements & Goals

# User Data Management & Security


- Expand User Profile Information
- Personalized User Experience
- Use strict user data privacy & protocols

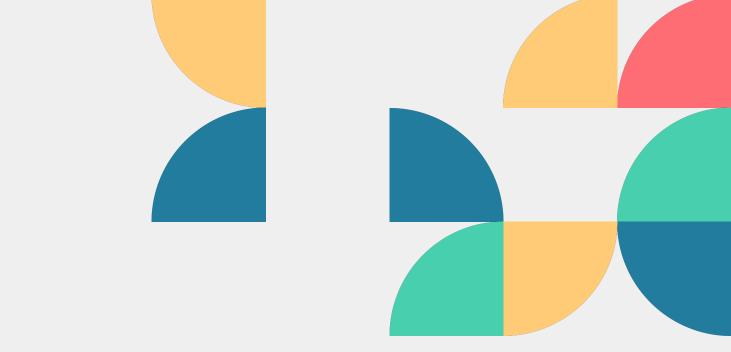
#### Chatbot & OCR Improvements

- Improve Chatbot experience
- Include other languages for chatbot and OCR




- Integrate more datasets in order to predict severity score
- Add High / Medium / Low Score
- Update the ML models




## ML Modeling Integrated

#### **OCR Integrated**



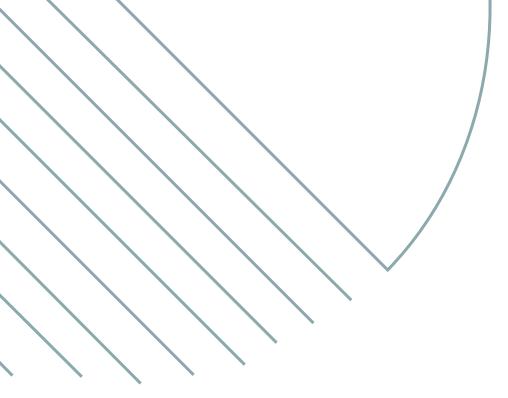
## THANK YOU Kairós team










# SUMMARY

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Etiam mattis, nunc vitae eleifend posuere, turpis mauris vestibulum purus, in pellentesque tellus elit vel nisl. Nam elementum nunc quis sapien pretium, at tincidunt mauris dignissim.



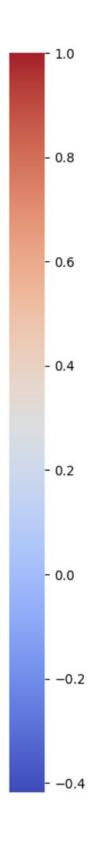




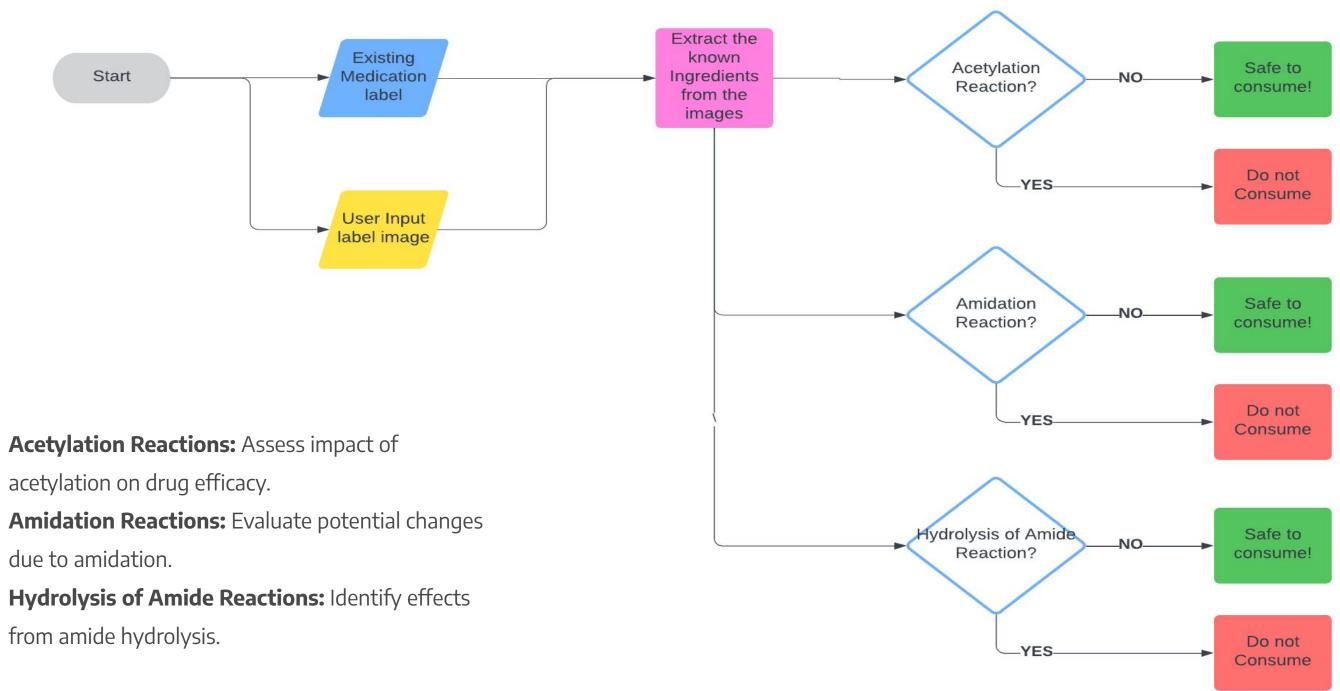


# Appendix



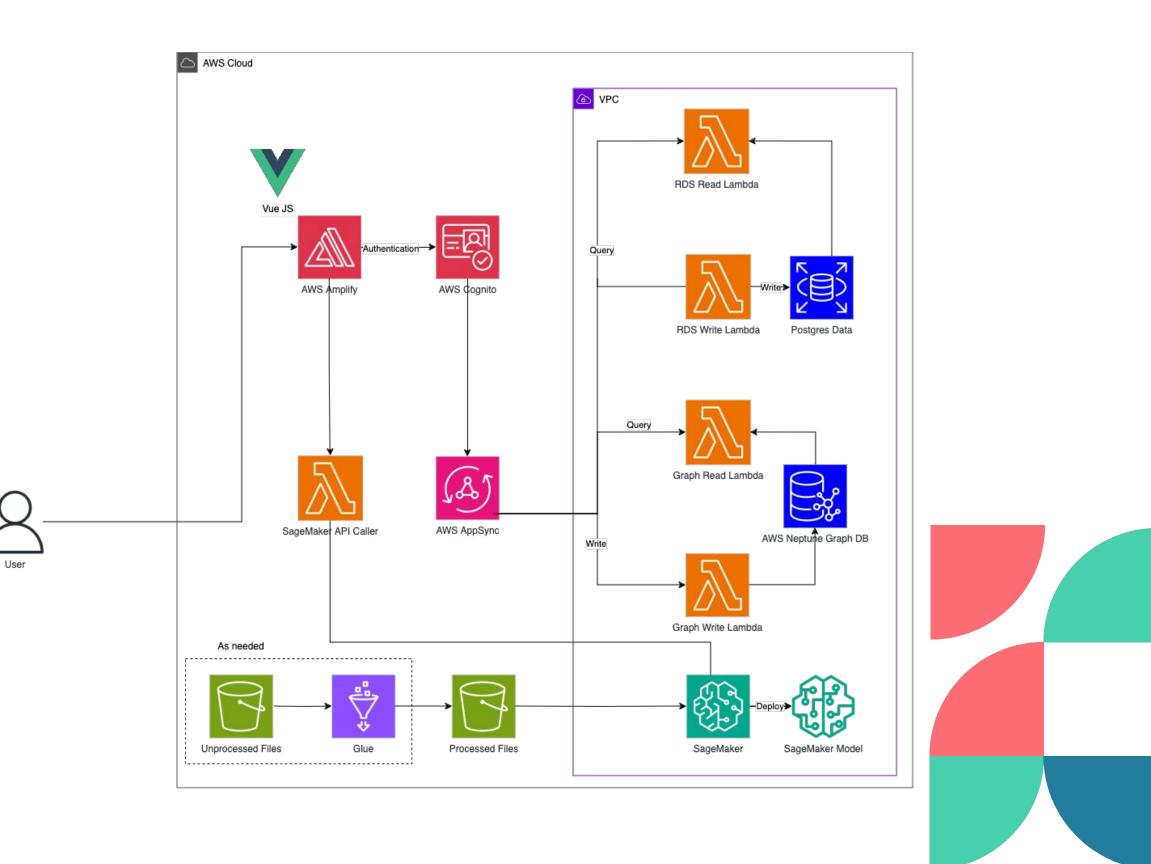






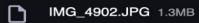

|                                 | Correlation Matrix |                      |         |                      |       |       |                 |                |           |           |                  |                            |
|---------------------------------|--------------------|----------------------|---------|----------------------|-------|-------|-----------------|----------------|-----------|-----------|------------------|----------------------------|
| molecular_weight -              | 1.00               | 0.66                 | 0.38    | 0.61                 | 0.61  | 0.40  | -0.05           | 0.13           | 0.27      | 0.16      | 0.35             | 1.00                       |
| numrotatable_bonds -            | 0.66               | 1.00                 | 0.21    | 0.50                 | 0.42  | 0.41  | -0.12           | 0.25           | 0.14      | -0.01     | 0.08             | 0.66                       |
| alogp -                         | 0.38               | 0.21                 | 1.00    | -0.32                | -0.20 | -0.29 | 0.05            | -0.05          | 0.88      | 0.77      | 0.46             | 0.39                       |
| polar_surface_area -            | 0.61               | 0.50                 | -0.32   | 1.00                 | 0.79  | 0.77  | -0.22           | 0.01           | -0.33     | -0.39     | 0.09             | 0.62                       |
| hba -                           | 0.61               | 0.42                 | -0.20   | 0.79                 | 1.00  | 0.41  | -0.06           | -0.06          | -0.17     | -0.18     | 0.23             | 0.63                       |
| hbd -                           | 0.40               | 0.41                 | -0.29   | 0.77                 | 0.41  | 1.00  | -0.18           | 0.22           | -0.30     | -0.42     | -0.03            | 0.41                       |
| cx_acidic_pka -                 | -0.05              | -0.12                | 0.05    | -0.22                | -0.06 | -0.18 | 1.00            | -0.04          | 0.12      | 0.36      | 0.07             | -0.05                      |
| cx_basic_pka -                  | 0.13               | 0.25                 | -0.05   | 0.01                 | -0.06 | 0.22  | -0.04           | 1.00           | -0.11     | -0.31     | -0.19            | 0.11                       |
| cx_logp -                       | 0.27               | 0.14                 | 0.88    | -0.33                | -0.17 | -0.30 | 0.12            | -0.11          | 1.00      | 0.87      | 0.39             | 0.29                       |
| cx_logd -                       | 0.16               | -0.01                | 0.77    | -0.39                | -0.18 | -0.42 | 0.36            | -0.31          | 0.87      | 1.00      | 0.37             | 0.18                       |
| aromatic_rings -                | 0.35               | 0.08                 | 0.46    | 0.09                 | 0.23  | -0.03 | 0.07            | -0.19          | 0.39      | 0.37      | 1.00             | 0.36                       |
| molecular_weight_monoisotopic - | 1.00               | 0.66                 | 0.39    | 0.62                 | 0.63  | 0.41  | -0.05           | 0.11           | 0.29      | 0.18      | 0.36             | 1.00                       |
| molecular_species -             |                    |                      |         |                      |       |       |                 |                |           |           |                  |                            |
|                                 | molecular_weight - | numrotatable_bonds - | alogp - | polar_surface_area - | - hba | - pqu | cx_acidic_pka - | cx_basic_pka - | cx_logp - | cx_logd - | aromatic_rings - | ular_weight_monoisotopic - |




## **MVP Flow**

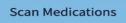





## Data Architecture



## OCR Integration




Limit 200MB per file • JPG, JPEG, PNG





Uploaded Image Thumbnail



Potential Medications from Image:

Select a medication to add:

TAMSULOSIN

Add Selected Medication

Enter a drug name

VANOXERINE

Search Drug

Select the correct drug:

VANOXERINE

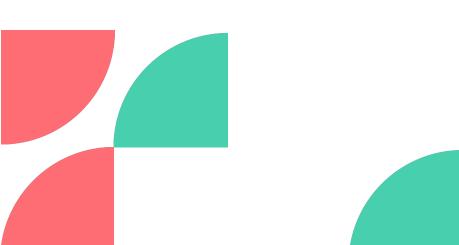
Add Selected Drug

TAMSULOSIN



#### Amazon Textract

## Type of Reactions


Acetylation

Amidation

### Hydrolysis of Amide

Many drugs are processed in the body through the acetylation reaction, either by biotransformation into an effective compound or to be metabolized into substances that the body can excrete in a more simpler manner.

Amides are polar, meaning they have regions of high positive and negative electrical charge density, which allows them to interact with biological receptors and enzymes. Amides are also stable and can help drugs resist rapid metabolic degradation in the human body. Amide hydrolysis is important in drug discovery and development because it can make drugs active



