Pawpulation Forecast

Final Presentation August 6, 2024 **Our Team**

Erin Smith

Project Manager

Rob Chimel

Data Lead

Andre Gigena

Front End Lead

Jessica Huber

Model Lead

Problem

Problem

Animal shelters have limited resources¹ and many animals are in need of temporary shelter², making it critical to optimize care. Knowing the length-of-stay of each animal would help shelters make better decisions on resource allocation³.

1 https://www.usatoday.com/story/news/nation/2024/02/20/more-dogs-euthanized-than-cats-2023/72633423007/

2 https://www.aspca.org/helping-people-pets/shelter-intake-and-surrender/pet-statistics

3 Subject Matter Expert Interview with Melanie Sobel Director of Denver Animal Protection

Solution

Pawpulation Forecast is a length-of-stay prediction report generator for animal shelters

Shelters will be able to leverage these reports to make resource allocation decisions that will help them reduce the number of animals in their care at a given time

Our approach includes an automated data flow with XGBoost model training and self-serve report generation and export

Data

Data Source & Engineering

Animal Shelter Income and Outcome Dataset - Sonoma Department of Health Services, Denver Animal Protection & Austin Animal Center

- ~230K records & counting
- API for Sonoma and Austin (MVP uses Sonoma API)
- Train on Sonoma, test on Denver and Austin

Feature Engineering

- Handling all datasets, a challenge that paid off
- Added 14 new features by scraping keywords, embedding notes, summarizing dates

Data Pipeline Features

Simple

- *load_data* cleans user inputs and handles all feature engineering
- *sklearn_pipeline* prepares clean data for inference

Functional

- Accepts multiple inputs, from API calls, bulk uploads and user inputs
- Lightning fast report generation* and intake results

*1 month reports are processed in under a second in MVP

EDA Learnings

Gender is not a good predictor

Behavior matters

Model

Our approach builds on related work⁵ which sought to predict animal exit outcome

Predicting the Outcome of Dogs at the Austin Animal Center

Presented by: Giulia Bronzi, Hannah Kim, Willa Sun, Nikki Tong (Wellesley College)

Similarities

- Both applications intend to help shelters make better decisions upon intake
- Animal shelter intake and outcome data includes similar animal information
- Both model outputs are classification predictions

Differences

- Model objectives: research predicts exit outcome vs our model predicts days at shelter
- Animal shelter data: research used Austin data vs we used Sonoma data
- Model approaches: research used regression tree vs we selected XGBoost

5 https://www.causeweb.org/usproc/eusrc/2020/program/8

Our chosen model had the highest overall performance compared to alternative options

Explored baseline models with bucket labeling

- Logistic Regression: 0.45 accuracy, 0.37 f1-score
- Random Forest: 0.61 accuracy, 0.57 f1-score
- Gradient Boosted: 0.57 accuracy, 0.52 f1-score
- XGBoost: 0.61 accuracy, 0.54 f1-score

Label	Day Range	# Rows
0	[0, 1]	7170
1	(1, 5]	3502
2	(5, 13]	4474
3	(13, 30]	5214
4	(30, 298]	4875

We selected XGBoost as the model to continue with...

Bin adjustments helped increase the models usefulness for customers and slightly improved performance

1-score			Confusion Matrix - XGBoost						
0.56 f1-score		0 -	1649	156	27	19	1		
Day Range	# Rows		323	737	161	55	2		
[0, 3]	9362	ue Labels 2	115	256	388	162	3		
(3, 14]	6327	Ę	40	05	201	551	-		
(14, 30]	4671	m -	48	95	201	100	/		
(30, 100]	4398	4 -	4	9	9	51	18		
(100, 298]	477		ò	i	2 Predicted Labels	3	4		

Baseline XGBoost: 0.61 accuracy, 0.54 f1-score

Grid Search XGBoost: 0.66 accuracy, 0.56

Label

0

1

2

3

4

- Params:
 - colsample_bytree: 0.9
 - learning_rate: 0.1
 - max_depth: 7
 - n_estimators: 300
 - subsample: 0.8

However, generalizability across shelters is low

Austin Dataset

- XGBoost: 0.32 accuracy, 0.14 f1-score

Denver Dataset

- XGBoost: 0.04 accuracy, 0.02 f1-score

Low generalizability across shelters is due to data set inconsistencies and feature importance

1.00						
differences	Index	Feature Name (SONOMA)	Index	Feature Name (AUSTIN)	Index	Feature Name (DENVER)
annerenees	fO	Туре	fO	Туре	fO	Туре
	f1	Breed	f1	Breed	f1	Breed
	f2	Color	f2	Color	f2	Color
	f3	Sex	f3	Sex	f3	Sex
	f4	Size	f4	Size	f4	Size
	f5	Kennel_Number	f5	Kennel_Number	f5	Kennel_Number
	f6	Intake_Type	f6	Intake_Type	f6	Intake_Type
	f7	Intake_Subtype	f7	Intake_Subtype	f7	Intake_Subtype
	f8	Intake_Condition	f8	Intake_Condition	f8	Intake_Condition
	f9	Intake_Jurisdiction	f9	Intake_Jurisdiction	f9	Intake_Jurisdiction
	f10	Multipe_Visit_Count	f10	Multipe_Visit_Count	f10	Multipe_Visit_Count
	f11	Age_inDays_at_Income	f11	Age_inDays_at_Income	f11	Age_inDays_at_Income
	f12	Age_Group	f12	Age_Group	f12	Age_Group
	f13	Is_Agressive	f13	Is_Agressive	f13	Is_Agressive
	f14	Has_Name	f14	Has_Name	f14	Has_Name
	<mark>f15</mark>	Is_Fixed	f15	Is_Fixed	f15	Is_Fixed
	f16	Is_Mixed_Breed	f16	Is_Mixed_Breed	f16	Is_Mixed_Breed
	f17	Is_Multicolor	f17	Is_Multicolor	f17	Is_Multicolor
	f18	Color_Embedding_Cluster	f18	Color_Embedding_Cluster	f18	Color_Embedding_Cluster
	f19	Breed_Embedding_Cluster	f19	Breed_Embedding_Cluster	f19	Breed_Embedding_Cluster
	f20	Intake_Year	f20	Intake_Year	f20	Intake_Year
	f21	Intake_Month	f21	Intake_Month	f21	Intake_Month
	f22	Intake_Day	f22	Intake_Day	f22	Intake_Day
	f23	Birth_Year	f23	Birth_Year	f23	Birth_Year
	f24	Birth_Month	f24	Birth_Month	f24	Birth_Month
	f25	Birth Day	f25	Birth Day	f25	Birth Day

Reports

Reports were designed for users who need to make resource allocation decisions for one or many animals

Length-of-Stay Overview

Intake Date, Outcome Date

Hypothetical Example

As Sonoma Animal Shelter prepares for their Adoption Event on July 19, they may choose to dedicate more resources towards advertising the 4 animals who are predicted to remain at the shelter for another 2+ months

If we had more time, we would focus on making our solution more customizable to each shelter

- Model training and bin adjustments for each shelter
 - Denver: +.57 accuracy and +.37 f1-score once trained on the Denver data set
 - Austin: +.19 accuracy and +.24 f1-score once trained on the Austin data set.
- **Strategy recommendations** in generated reports based on shelter best practices
- Intake and outcome data management system options for shelters who don't have standardized data collection practices

Based on interviews, our reports show promise of being helpful to animal shelters

"Yes, this would help tremendously. We could potentially try to transfer pets to a foster based rescue that would be more suitable for their needs. Or even come up with different programs to keep the pet in their original home, like our training courses"

- Humane Society of Memphis animal shelter

Wrap Up

Pawpulation Forecast aims to help animal shelters better allocate limited animal care resources by providing predictions for how long animals will remain in their care.

Acknowledgements

The following subject matter experts contributed heavily during the research and/or prototype testing phases of our project:

- Monica Dangler, Director of Pima Animal Care Center (PACC)
- Kaitlyn Pappas, PACC Employee
- Katie Hutchinson, PACC Animal Placement Manager
- Melanie Sobel, Director of Denver Animal Protection
- Sarah Siskin, Adoption Manager, Humane Society of Memphis
- Joscelyne Thompson, Intake Manager, Humane Society of Memphis

Thanks!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

Please keep this slide for attribution

