
Web Site Metadata

MIMS Final Project

Anuradha Roy
School of Information

UC Berkeley
anu@ischool.berkeley.edu

Advisor: Erik Wilde

Contents

1 Introduction 3

2 System Design 5

3 Quantifying Metadata 7

4 Useful Links 20

5 Related Work 25

6 Future Work 26

7 Conclusion 26

8 Acknowledgment 26

1

1 INTRODUCTION

Abstract

The currently established formats for how a website can publish metadata about a site’s pages, the
robots.txt file and sitemaps, focus on how to provide information to crawlers about where to not
go and where to go on a site. This is sufficient as input for crawlers, but does not allow websites to
publish richer metadata about their site’s structure, such as the navigational structure. This project
studies the availability of website metadata on today’s Web in terms of available information resources
and quantitative aspects of their contents. Such an analysis of the available Web site metadata not
only makes it easier to understand what data is available today, but also serves as the foundation for
investigating what kind of information retrieval processes could be driven by that data. Using data
gathered in this study, we designed and prototyped a system for generating most useful pages (called
ulinks) from a site. Our system is similar to, albeit much simpler than, sitelinks shown by leading search
engines. Our analysis of the limitations of our ulink generation system shows that if websites had richer
data formats to publish metadata, then ulink generation can be much improved.

1 Introduction

Most information resources on the Web are websites, informally defined as a set of webpages made available
by some information provider. While the concept of a website is only loosely defined, it is often associated
with all webpages available under one domain. (This could be generalized to all Web pages using the same
URI prefix, but for the purpose of this paper, we look at domain-based sites only). Websites are usually
accessed by web crawlers [10] which systematically retrieve webpages, in most cases to drive later stages of
indexing them for eventually driving a search engine. To allow websites some level of control over crawlers,
the informal robots.txt format [9] —sometimes also referred to as the Robots Exclusion Protocol (REP)—is
the established way of how a Web site can control crawlers. This format can only be used on a per-domain
basis, and specifies rules for all pages under that domain.

The robots.txt format is a simple mechanism that allows websites to publish metadata about itself. In
particular, the robots.txt format allows websites to specify parts of the website that should not be accessed
and parts that can be accessed by web crawlers. This assumes that crawlers get information about available
URIs from other source; in most cases this happens by following links on already crawled pages. On the
other hand, sites often want to be crawled so that their contents are available through search engines, and
the sitemaps format1 allows sites to publish lists of URIs which they want to advertise to crawlers. Sitemaps
can be made available to crawlers in different ways; they can be directly advertised through user interfaces
or an HTTP ping interface to individual crawlers, or they can be specified in the robots.txt file.

Sitemap information can be useful for exposing the deep web [8], for example, those pages that are
accessible only through HTML forms. Because search engine crawlers typically discover pages by following
links, large portions of the Web can be hidden from crawlers, and thus might never be indexed, and thus
never show up in search results. Thus, without sitemap information, search engine crawlers might not be
able to find these pages. Since sitemap information may be incomplete and/or inaccurate, search engines
have to rely on other techniques to completely crawl the deep Web.

Large search engines crawl different parts of the web with different frequencies. For example, news sites
will likely be crawled (and indexed) much more frequently than sites that change infrequently. Sitemap
information (in particular, information within lastmod tags) can be used by crawlers to set their crawl
schedules. How much of this information is used by current search engines is unknown.

Motivated by the usefulness of sitemaps, we study and quantify sitemaps data from the top-100K most
popular websites (according to Alexa [1]). We characterize the popularity of the sitemaps format, the
amount of information provided in these sitemaps, the structure of this data, and our experience crawling
and processing this data.

With only these two formats, websites currently have only a limited way of publishing their site’s structure
in a machine-readable way, and these ways are mainly intended to steer crawlers. A key question we ask in
this project is: Are these formats sufficient for exposing a site’s navigation structure?

For concreteness, we focus on one aspect of site navigation structure, namely, most useful or popular
pages from a site. We call such pages ulinks (for useful links). Thus, our question is: Are these formats
sufficient for exposing the popular pages of a website? From a purely mathematical perspective, the answer
is trivially “yes”: If each webmaster methodically ranked pages according to their usefulness and set the
priority of each page according to its rank, then the most useful pages (according to webmasters) would be

1http://www.sitemaps.org/

2

http://www.sitemaps.org/

2 SYSTEM DESIGN

exposed. This is, however, not a practical scenario. In other words, our question really should be: From the
website data that currently exists, can we compute the most useful pages of a website?

To answer this question, we take a practitioner’s approach. We narrow our focus on a practical question:

Using only the sitemap information, is it possible to extract the set of most useful pages for a
website?

We call these useful pages ulinks. Who would benefit from ulinks? Any user in the browsing mode (as
opposed to searching mode) could potentially benefit from knowing the ulinks of a site before visiting the
site.

As a point of reference, Google’s search results, for example, occasionally include a small “sitemap”
(called “sitelinks”) for highly ranked search results (Figure 1 shows an example). An example of sitelinks is
shown in Figure 1. According to a patent [3], this sitelink is derived from user behavior, in particular, the
number of times a page has been accessed, the amount of time spent on the page, and from the content of
the page itself—whether the page contains commercial transactions, etc.

To see whether we can compute the set of useful pages of a website, we designed and prototyped a system
based only on sitemap information provided by websites. We apply our ulink generation technique to several
thousand websites (among the top 100K most popular) and report these results. Our experiment uncovers
several limitations of the sitemap format (and the current usage of this format).

Figure 1: Algorithmically Computed Site Map

The rest of the paper is organized as follows. We describe our crawler for collecting sitemap information
and the system for generating ulinks in Section 2. In Section 3, we first present starting dataset for the
domains to be crawled (Section 3.1) and then the crawling process for robots.txt files and the results from
that process (Sections 3.2 and 3.3). We continue by describing the crawling process for sitemaps files and the
results from that process (Sections 3.4 and 3.6). In Section 4, we then describe results of applying our ulink
generation algorithm to around 4000 websites (Section 4.1). Finally, we present limitations of our algorithm
by comparing ulinks and sitelinks (Section 4.2). We also present some recommendations on changes to the
sitemap protocol that would help automated ulink generation. We conclude the paper by describing related
and future work (Sections 5 and 6).

2 System Design

Our system needs to do the following basic functions:

1. crawl the web for sitemap files,

3

2.1 Crawler 2 SYSTEM DESIGN

2. store sitemap information so we can use it later, and

3. compute a set of ulinks for a site.

We now describe each of these subsystems.

2.1 Crawler

Domain List

 1. yahoo.com
 2. youtube.com
 3. google.com
 4. live.com
 5. facebook.com
 6. myspace.com
 7. msn.com
 8. hi5.com
 9. megaclick.com
10. wikipedia.org
11. blogger.com
12. skyrock.com
13. google.fr
14. rapidshare.com
15. orkut.com.br
16. fotolog.net
...

robots.txt Collection Sitemap Information URI Collection

robots.txt
w/ sitemap

ro
bo
ts
.t
xt

 w/o sit
emap

robots.txt w/ sitemap

robots.txt
w/ sitemap index

robots.txt
w/o sitemap

Sitemap Info

sitemap
(XML, XML.gzip,
plain text, RSS)

sitemap index

no
 r
o
b
o
t
s
.
t
x
t

no site metadata

URIs

55
.1

%

6.3%

38.6%

http://www.garnek.pl/szunaj/1192093/holandia-2007-rockanje
http://www.amazon.com/Labeling-Glenn-Hudak/dp/0415230861
http://www.nexternal.com/alfaintl/Product3106
http://backyardgardener.com/gp/Gardening_Products/Outdoor_Living/BBQ_Grills_Acce
http://www.eautoworks.com/vehicles/Acura/Integra/1997.php
http://www.shop-apotheke.com/elektrolyt_inf__lsg__139_a22a0d88r9r_pd.htm
http://www.soitu.es/soitu/2008/04/21/info/1208812694_837554.html
http://extratorrent.com/download_info/793396/%26Epsilon%3B%26lambda%3B%26lambda%
http://www.amazon.ca/Sufi-Message-Hazrat-Inayat-Khan/dp/8120807561
http://eventful.com/rockport_me/events/sketchbooks-/E0-001-016604812-7
http://www.dailymail.co.uk/health/article-104897/Ive-got-improved-memory-gum.htm
http://www.quia.com/quiz/778472.html
http://www.amazon.co.jp/Barrito-Latino-Vol-4-Various-Artists/dp/B00009VGVM
http://www.liverpooldailypost.co.uk/liverpool-life-features/the-beatles/the-beat
http://www.pricecheck.co.za/offers/1825705/2004+Peugeot+206+GTi+99+KW/
http://osdir.com/ml/audio.mpc.user/2003/index.html
http://www.nzherald.co.nz/entertainment/news/article.cfm?c_id=1501119&object
http://www2.loot.co.za/shop/product.jsp?lsn=0806351454
http://www.lne.es/secciones/noticia.jsp?pRef=2008090200_42_671491__Asturias-Poca
http://www.amazon.co.uk/Wire-2-Dominic-West/dp/B000A529ZE
http://www.gazettelive.co.uk/news/the-environment/green-bits/2007/03/23/bronze-aw
http://www.thaivisa.com/forum/Anusarn-t80120.html
http://www.beatport.com/index.php?url=en-US/urlset/content/track/catalog&page
http://www.pricecheck.co.za/products/1809457/SUCCESSFUL+POULTRY+MANAGEMENT+-+MOR
http://www.amazon.ca/Strange-Encounters/dp/0752535978
http://www.textbookx.com/detail-book-9785552545049.html
http://www.standvirtual.com/index.php?op=search&aktion=find&x=1&rub=
http://www.smsdate.com/index.php?country=41&state=14
http://www.simpy.com/user/alenka/tag/administers
http://www.vatera.hu/ps3_sony_sixaxis_joy_vezetek_nelkuli_eredeti_sony_99179034.
http://www.chroniclelive.co.uk/north-east-news/have-your-say/readers-letters/200
http://www.ricardo.ch/accdb/viewitem.asp?AuctionNr=548499626
http://gizmodo.com/5032204/iphone-arm-frees-hand-for-debauchery-or-douchery
http://backyardgardener.com/gp/Gardening_Products/Outdoor_Living/BBQ_Grills_Acce
http://www.pc-infopratique.com/d-link-dwl-g510-dwl-g510-80211g-502960-fiche-tech

Figure 2: Overview of the Crawling Process

The crawler’s job is to download sitemap files from the web. It takes as input a set of seed sitemap URIs.
It then downloads these seed files and parses them. If these sitemap files point to other sitemap files (that
is, these are in fact index files), then it recursively downloads those as well. And so on. After downloading
each file, the crawler stores two types of information:

1. information about how the crawler discovered the sitemap, and

2. information pertinent to the download itself (for example, was the download successful, where is the
downloaded file stored locally), and

This information is stored in a database, which we describe in detail in Section 2.2.
Basically, the crawler visits each node of the forest whose roots are the seed sitemap URIs. Nodes in this

tree correspond to sitemap URIs and there is an edge from node x to y (x is the parent of y) if URI y is a
sitemap URI contained in the sitemap file that has URI x. The crawler maintains a database that contains
this tree structure and information about the download process.

2.2 Sitemapinfo Database

The sitemapinfo database is both a representation of the hierarchical (tree) structure of the sitemap URIs
and stores information about the crawl itself. Table 1 shows the schema for our database. id is a unique
name for a node in the sitemap tree. parent is the id of the parent of the node. uri is the URI of the sitemap
file. filetype is the format of the sitemap file—XML, text, gzipped XML, etc. downloadinfo denotes whether
the download was successful or not. localfile is the location of the file where the downloaded file is stored.

Field Type Example
id int 12345
parent int 1000
uri string http://www.example.com/sitemap17.xml
filetype enum XML
downloadinfo enum DLDSUCCESS
localfile string /path/to/local/file

Table 1: Database schema for the sitemapinfo database

4

2.3 Implementation Details and Heuristics 2 SYSTEM DESIGN

2.3 Implementation Details and Heuristics

The crawler is written in Python, while the database is a MySQL database. We ran it on a Intel Pentium
dual core processor running at 1.6GHz, with 1MB of cache, and 1GB of main memory. Most of the crawl
was done over a low-fi home DSL line. It consists of two threads—one that handles the queue containing
to-be-crawled sitemaps and one that handles reading and writing of the database.

We did a couple of optimizations to ensure that the crawler ran fast enough. First we noticed that some
of the downloads took a long time. In fact, some sites took a long time to respond to HTTP requests.
Because coverage was not a concern initially, we set used timeouts both for establishing the initial HTTP
connection and for downloading the file. For the former, we used a timeout of 10 seconds and for the latter
a timeout of 30 seconds.

Another optimization we used is for sites that have a huge number of sitemap files. To ensure that each
site is crawled relatively quickly, we upper bound the maximum number of URIs that will be crawled from
each sitemap file as follows: Let α be a number between 0 and 1 and let n0 be an integer. Let n be the
number of sitemap URIs in any given sitemap file. Then we ensure that we crawl at least the maximum of
n0 and αn URIs from file. This ensures that we get representative samples from each sitemap file, but we
do not spend too much time crawling any one site. Note: This heuristic works well for the case of sites such
as www.amazon.com, which contains a large list of inventory items.

The crawl of sitemaps for 6268 sites (for which we had seed sitemap URIs) took about 40 hours. We give
more details on the size of these files and their information content in Section 3.

2.4 URI Prefix Tree and Pruning

Given that we have crawled sitemaps for a site S, we want to find out a small set of ulinks for that site.
Which webpages in a site of thousands (or even millions) of pages are most useful is subjective at best. Our
goal was not explicitly to find the best performing ulink generation algorithm. That issue has received a lot
of attention by search engines. The 3 most popular search engines (Google, Yahoo, and Live) all provide
ulinks. (These are called sitelinks, especially in the context of Google’s search results, but we want to use a
separate term to avoid confusion.)

We approached the ulink generation issue from a data sufficiency perspective: Do top sites expose
enough navigational information in sitemaps that allows simple aggregation schemes to compute a set of
ulinks? If not, what additional information should they expose so that simple aggregation schemes expose
the navigational structure?

To answer this question, we needed to devise simple aggregation schemes for finding ulinks from only
sitemap information. It is important to emphasize the “only”: Search engines likely use a lot of information
that is not contained in sitemap files. Examples of such data might include user preferences measured via
user clicks, links structure of the website, content of the pages, etc. We do not have this data and we do not
want to use these.

Our aggregation scheme is based on the simple observation: If a URI is useful, then it would occur as a pre-
fix in many different URIs of the site. For example, if a site sells books and each book has a separate webpage.
For example, www.bookseller.com/books/book17.html), then the prefix www.bookseller.com/books would
occur very frequently. This forms the basis for our ulink generation algorithm. In our algorithm, we
represent each URI as a path (from the root to some node) in a prefix tree. In this tree, each URI
is broken into components. For example, the components of www.bookseller.com/books/book17.html
has 3 components: www.bookseller.com, books, and book17.html. Nodes represent these components
and edges represent sequence. For each site, the set of nodes and edges form a forest. Furthermore, we
define the weight of a node as the number of URIs that use that node. For example, if there are two
URIs www.bookseller.com/books/book17.html and www.bookseller.com/books/book19.html, then the
weight of the books node is 2.

Say we want to find the top-k ulinks from a site. We first construct the URI tree as described above. We
then progressively fold the leaves of this tree till the number of leaves is as small as possible without being
lower than m (a parameter). To choose the next leaf to prune, we use a simple greedy heuristic: Choose an
internal node x such that

1. all of x’s children are leaves, and

2. the number of nodes remaining if all of x’s children are removed is at least m.

5

3 QUANTIFYING METADATA

From all candidates nodes x, we choose one that has the smallest weight and remove all its leaves. We
iteratively choose candidate nodes and remove its leaves till we can find a node x that satisfies the above
two conditions. When we cannot remove any node, we output the remaining leaves in descending order of
their weights.

We would like to mention the intuition for choosing the smallest weight candidate node: Assuming that
different parts of the URI prefix tree represent diverse parts of the site, we want the set of ulinks to cover
diverse parts of the site. For example, assume that www.big-portal.com is a large portal that sells lots
of different items. If we had to pick just 2 ulinks for www.big-portal.com, we would prefer to choose, for
example,

1. www.big-portal.com/books and

2. www.big-portal.com/music

instead of choosing

1. www.big-portal.com/books/fiction and

2. www.big-portal.com/books/biography

because the former covers a larger portion of the URI prefix tree.
We used one simplifying heuristic for generating URI trees: For each site, we added up to 20000 URIs in

the tree. If we had more URIs available, we randomly sampled 20000. This was done for efficiency reasons.
Note that we chose a number that is large enough that the “heavy” nodes of even trees with a million nodes
would be sampled.

3 Quantifying Metadata

Starting from robots.txt files, we used our crawler to collect sitemap files. We now quantify the these two
kinds of data.

3.1 Domain Statistics

Our starting point is Alexa’s dataset of the most popular 100’000 domains. This dataset has some bias,
based on the way this dataset is collected. Even though the exact method of how the dataset is collected is
not published, we chose to accept the bias, because our research does not depend on the exact ranking of
popular domains, but instead just depends on a reasonably large set of popular domains. Before we describe
our use of the domain name dataset, here are some basic statistics about it. The distribution of top-level
domains (TLDs) in that dataset is shown in Figure 3.

Based on this dataset, our crawling process requests robots.txt files from all domains (described in
Section 3.2).

3.2 Crawling for Robots.txt

Starting from Alexa’s dataset of the most popular 100,000 domains, we collect robots.txt files. The
strategy for that is a simply two-step process. First, the domain name itself is used to request the
file, for example sending a request for http://domain.com/robots.txt. In most cases, if there is a
robots.txt, it is either served directly, or there is an HTTP redirect to the www-prefixed URI, such
as http://www.domain.com/robots.txt. However, some servers are setup to redirect any requests for
http://domain.com/* to http://www.domain.com/, in which case the request for robots.txt is redirected
to the site’s home page. Hence, we check the result of requesting http://domain.com/robots.txt with sim-
ple heuristics whether it is HTML, and if it is, we send a second request for http://www.domain.com/robots.txt.

Based on this simple two-step process, our crawl of 100,000 domains for robots.txt files yields 44,832
files; more detailed statistics about these files can be found in Section 3.3. Various error conditions can
be encountered when requesting the files. Here is a collection of the most frequent error conditions when
requesting or processing robots.txt files:

• Server Errors: Some servers encounter internal misconfigurations and return server errors (we received
500, 503, and 504 responses). Some have badly configured redirects, in which case the redirect points
to unintended resources (such as http://www.domain.comrobots.txt, omitting the slash). In all of
these cases it is impossible to retrieve a robots.txt file.

6

3.2 Crawling for Robots.txt 3 QUANTIFYING METADATA

95
55

79

40000

50000

60000

9 12
54
0

20000

30000

40000
74

09

34
56

21
55

20
61

16
64

14
33

13
90

13
06

12
74

11
11

94
4

94
1

89
0

82
3

81
3

74
7

70
1

69
8

64
3

61
9

58
5

1

0

10000

0%
)

1%
)

6%
)

6%
)

7%
)

7%
)

4%
)

9%
)

1%
)

8%
)

2%
)

5%
)

5%
)

9%
)

3%
)

2%
)

5%
)

1%
)

0%
)

5%
)

2%
)

9%
)

4%
)

co
m

(5
5.8

0
ne

t (
7.4

1
or

g (
3.4

6
er

ma
ny

: d
e (

2.1
6

Ru
ss

ia:
 r

u (
2.0

7
Fr

an
ce

: f
r (

1.6
7

Po
lan

d:
 pl

 (1
.44

ep
ub

lic
:

cz
 (1

.39
Br

as
il:

 br
 (1

.31
ng

do
m:

 u
k (

1.2
8

Ja
pa

n:
 jp

 (1
.12

un
ga

ry:
 h

u (
0.9

5
Ch

ina
: c

n (
0.9

5
Ch

ile
: c

l (0
.89

inf
o (

0.8
3

Sp
ain

: e
s (

0.8
2

ge
nti

nia
:

ar
 (0

.75
ed

u (
0.7

1
Sl

ov
ak

ia:
 s

k (
0.7

0
he

rla
nd

s:
 nl

 (0
.65

Ita
ly:

 it
 (0

.62
IP

 ad
dr

es
s (

0.5
9

oth
er

 (1
2.5

4

Ge

Cz
ec

h R

Un
ite

d K
i H Ar
g S

Ne
th

Figure 3: Distribution of TLDs in Popular Domains

• Media Type Errors: Some servers respond with a text/html entity to the request. In most cases, they
still serve a plain text file, but it is mislabeled as a different media type.

• Charset Issues: If the server does respond with a robots.txt file, there can be character set issues.
These may manifest themselves as references to non-existing character sets (for example, windwos-1251,
win-12512, and Latin-13), character sets not supported on the client side, and robots.txt files con-
taining errors with respect to the signaled character set.

• Size: The biggest robots.txt file is 12.3MB. While this is not a very big file, it is quite a bit larger
than anticipated (see Figure 5 for a distribution of files sizes).4

• Connection Problems: A number of servers did not properly close the connection, so that connections
would remain open for a long time. Another problem were dropped connections. However, in the vast
majority of cases, connections were handled properly by the crawled servers.

We do not fully implement error recovery (such as trying to fix corrupted robots.txt files and retrying
failed connection attempts), because error conditions are only encountered in a small fraction of cases.
This means that our crawl yields slightly fewer robots.txt files than it could with a more robust crawling
mechanism, but that is an acceptable compromise allowing a less complex crawler implementation.

One interesting case is a 380,000 lines, 12.3MB robots.txt file from cityweekend.com.cn. Apparently,
this robots.txt file lists many user accounts on that site, and specifically sets Disallow rules for them.
Strictly speaking, this might be necessary if crawlers are to be controlled in specific subsets of user-specific
pages, because robots.txt rules do not support patterns to be specified for URIs, they only support prefixes.

2These two should be windows-1251.
3This should be latin1 or ISO-8859-1 (preferred).
4Most bigger files, though, are either HTML (caused by improper redirects) or text-based sitemaps, which are (usually long)

line-by-line lists of a site’s URIs.

7

3.3 Robots.txt Data Analysis 3 QUANTIFYING METADATA

On the other hand, it seems unlikely that crawlers will interpret files of that size, and there also is the issue
of potentially unintended disclosure of account data (discussed in more detail in Section 3.5).

The specification of the robots.txt file format only defines the three fields User-Agent, Disallow, and
Allow. However, the specification does allow other fields as well, as long as they are based on the same basic
syntax. Some other fields that are used are Noindex, Crawl-Delay, Request-Rate, and Visit-Time fields,
which are defined by specific crawlers, and apparently Web site administrators seem to believe these fields
are (at least potentially) interpreted by crawlers.5 Section 3.3 contains a more complete list of the fields in
our sample of robots.txt files, as well as other statistics about that data set.

3.3 Robots.txt Data Analysis

The robots.txt files crawled as described in Section 3.2 are mainly intended as a starting point to find
sitemap information, as described in Section 3.4. However, because the available literature does not present
a lot of data about large-scale collections of robots.txt files, we first present some statistics about the
dataset obtained in the first step of our study.

0.5

0.6

0.2

0.3

0.4

0

0.1

Figure 4: Distribution of Site Metadata

Figure 4 shows the distribution of site metadata in terms of domain ranking. It shows the likelihood of
a robots.txt file and of sitemap information being available depending on the popularity of the domain
(the overall averages are 45.1% for robots.txt files and 6.3% for sitemap information). The solid line shows
the likelihood of a robots.txt file being available, and the dashed line shows the likelihood of sitemap
information being available (because in our setup sitemaps are only discovered through robots.txt files,
the second line can never be higher than the first line, and for our data always is considerably lower than the
first). It can be seen that there is a slight correlation between domain popularity and metadata availability
(but mostly so for the most popular domains), which makes sense, because more popular sites probably
invest more effort in being as visible and as accessible as possible.

Figure 5 shows the distribution of the size of robots.txt files (in lines) over the number of robots.txt
files. It is a heavy-tail distribution with the average size being 29.8 lines (σ = 293.4) with a median of 7
lines. Since there is a fair number of rather large robots.txt files in our dataset, we want to understand the
reasons for these sizes. robots.txt files can become large for two reasons: because they contain individual
configurations for a large number of user agents, or because they contain a lot of instructions for one user
agent (or a combination of these two reasons). We therefore looked at how many individual configuration
sections for specific user agents the robots.txt files contain.

Figure 6 shows the result of this analysis. Again, it is a heavy-tail distribution with an average of 6
sections (σ = 29.5) and a median of 2. However, in this case there is a noticeable peak in the long tail, with
the center at robots.txt files having 120 user agent configuration sections.

Our assumption is that this peak has its origin in some widely used and reused template that originally
had 120 configuration sections, and then was adapted for various sites by adding or removing some of
these sections. There is a variety of templates and generators for robots.txt files available on the Web, so
assuming that one of these gained popularity is a reasonable explanation of the peak around 120 configuration
sections.

5Noindex has been introduced by Google and Crawl-Delay has been introduced by Microsoft.

8

3.3 Robots.txt Data Analysis 3 QUANTIFYING METADATA

1000

10000
t

x
t

Fi
le
s

1

10

100

1 10 100 1000 10000 100000 1000000

Number of Lines

N
um

be
r o

f
r

o
b

o
t

s
.

t

Figure 5: Distribution of robots.txt Size

10000

100000

t
x

t
Fi
le
s

1

10

100

1000

1 10 100 1000 10000

N
um

be
r o

f
r

o
b

o
t

s
.

t

Number of User‐Agent Sections

Figure 6: User-Agent Sections per robots.txt File

To better understand how current robots.txt files are using fields to steer crawlers, we looked at the
overall usage of fields. As stated in Section 3.2, only the three fields User-Agent, Disallow, and Allow are
defined by the robots.txt file format, but some other fields also have gained some acceptance. Table 2
contains a list of the ten most popular fields we found (sorted by the number of files containing this field,
based on the dataset of 44,832 files), also listing how many occurrences were found in total, and the average
number of occurrences per file based on the number of files in which this field was used.

The three standard robots.txt fields are among the most frequently used ones, and the popularity of
fields drops significantly after the top five. The Sitemap field points to a sitemap and is what we use for the
second step of our crawling process (described in Section 3.4). Most of the other fields we found are fields
only supported by particular crawlers, so if they do appear in an appropriate User-Agent section, they can
control that particular crawler. One exception to these crawler-specific fields are ACAP-prefixed fields, which
are part of the Automated Content Access Protocol (ACAP). ACAP is an initiative of content providers
to extend the robots.txt format so that it is possible to express more specific policies about the crawled
content, mostly about access and usage permissions for copyright-protected content.

The statistics shown in Table 2 are influenced by the fact that typically, for one User-Agent, there are a
number of Disallow rules specifying the URI prefixes that should not be crawled by that particular crawler.

9

3.3 Robots.txt Data Analysis 3 QUANTIFYING METADATA

Field Name #Files #Fields Fields/File
1. User-Agent 42,578 225,428 5.29
2. Disallow 39,928 947,892 23.74
3. Sitemap 6,765 10,979 1.62
4. Allow 3,832 23,177 6.05
5. Crawl-Delay 2,987 4,537 1.52
6. Noindex 905 2,151 2.38
7. Host 728 758 1.04
8. Request-Rate 121 127 1.05
9. Visit-Time 89 102 1.15

10. ACAP-Crawler 71 234 3.30

Table 2: Popular Fields in robots.txt Files

To better understand the complexity of these rules, and how much of a site’s structure they expose in terms
of specifying relevant URI spaces, we looked at the size of User-Agent sections, meaning those sections of a
robots.txt files which are specifying Disallow (and maybe other) rules for one specific User-Agent. These
sections are limited by User-Agent fields, or by the end of the robots.txt file. Figure 7 shows the results
of this analysis.

10000

100000

1000000

en
t S

ec
ti
on

s

1

10

100

1000

1 10 100 1000 10000 100000 1000000

Number of Disallow Rules

N
um

be
r o

f U
se
r‐
A
ge

Figure 7: Disallow Rules per User-Agent Section

The total number of User-Agent sections we found is 202,332. 33,589 User-Agent sections (16.6%) had
no Disallow rules at all (not shown in Figure 7 because of the logarithmic axis). This may be due to
the fact that they were actually empty, or contained rules other than Disallow, such as the ACAP rules
mentioned above. Apart from these User-Agent sections containing no Disallow rules, the distribution
shows a heavy-tail pattern, with the number of User-Agent sections containing one Disallow rule being
an outlier (138,695 or 68.5%). There also is one outlier in the other direction with one User-Agent section
containing 153,540 Disallow rules.

The idea of robots.txt most often is to restrict crawlers from certain pages and paths on a site. This
can make sense because of pages that are frequently updated, because of pages that contain content that
should not be indexed (e.g., because of copyright issues), or because of crawlers that interact with the server
in unfortunate ways when retrieving pages. This means that while some configurations in robots.txt files
are global (i.e., apply to all crawlers), there are also some which are for specific crawlers only. We looked at
the User-Agent fields in our dataset and counted the various strings listed there, trying to adjust for minor
variations such as capitalization, whitespace, or version numbers.

Table 3 lists the top ten User-Agent field values we found in our dataset (the total number of all

10

3.3 Robots.txt Data Analysis 3 QUANTIFYING METADATA

User Agent Occurrences
1. * 46,645 20.70%
2. Mediapartners-Google 3,825 1.70%
3. wget 3,787 1.68%
4. WebZIP 3,014 1.34%
5. Mozilla 2,696 1.20%
6. GoogleBot 2,694 1.20%
7. Microsoft URL Control 2,647 1.17%
8. WebBandit 2,271 1.01%
9. lwp-trivial 2,227 0.99%

10. MIIxpc 2,180 0.97%

Table 3: Popular User-Agents in robots.txt Files

fields was 225,304, the distribution of those fields across robots.txt files is shown in Figure 8). * is the
catch-all value which is used to define rules applying to all crawlers; it is by far the most popular value.
Mediapartners-Google is the crawler for sites participating in Google’s AdSense program, and is the most
frequently listed named crawler. wget and WebZIP are two similar “crawlers” which usually do not really
crawl the Web, but instead are used to download the contents of a site; they are often used to download site
contents for offline browsing or post-processing.

Many crawlers do not reveal their identity and use fake User-Agent field values to cloak themselves
as browsers. The Mozilla User-Agent value is the most frequently used one and thus is listed in many
robots.txt files; but if a crawler is misbehaving in the sense that it does not properly reveal its identity,
it is unlikely that it will be sufficiently well-behaving to respect robots.txt configurations. GoogleBot is
Google’s search engine crawler (it is using a different identity than the AdSense crawler mentioned earlier).
Microsoft URL Control is a default identity used within various Microsoft Web tools, and developers can
either change that when they develop software using these tools, or leave it at its default value. WebBandit
is a tool similar to wget and WebZIP, in most cases not used as a crawler, but for targeted downloads of
Web content. lwp-trivial is the default name used by the Perl module LWP::Simple. MIIxpc is a crawler
about which there is no public information available, but apparently it is active enough to be listed in many
robots.txt files.

100000

10000

en
tF

ie
ld
s

100

1000

of
 U
se
r‐
A
ge

10

N
um

be
r

1

Figure 8: Distribution of User-Agent Field Values

Figure 8 shows the distribution of occurrences of User-Agent fields. The horizontal axis linearly lists all
4,483 distinct User-Agent fields we found (Table 3 lists the top ten) sorted by the number of occurrences. It
can be seen that more than half of the User-Agent values only occur once. The tableau in the distribution at
about 1,000 occurrences (as magnified in the figure) is something that we believe to be caused by robots.txt
files being created using templates or generators, which usually just present a list of predefined User-Agent

11

3.4 Crawling for Sitemaps 3 QUANTIFYING METADATA

values, and therefore the values available there will show up in many template-based or generated files.
The fact that many crawlers are only mentioned once or a small number of times can be explained by

the fact that a particular crawler might have had problems with the setup of a certain Web site, which then
blocked access to that crawler by adding it to its robots.txt file. However, this depends on the assumption
that this would be a badly behaving crawler which is just poorly implemented, putting undue strain on a
server, but still well-behaving in the sense that it respects robots.txt. In addition, there are badly behaving
crawlers which do not even respect robots.txt, in which case they need to be blocked at the HTTP or TCP
level, implementing blocking based on HTTP User-Agent headers or even IP addresses. Limitations sites
enforce for this latter kind of crawler do not show up in robots.txt files.

These considerations about crawler behavior and how they might be affected by robots.txt files are
based on our static robots.txt analysis. Section 5 discusses a more dynamic approach chosen by the BotSeer
system, which observes dynamic behavior of crawlers by setting up honeypots.

3.4 Crawling for Sitemaps

Starting from the robots.txt files obtained as described in Section 3.2, the next step to get more complete
Web site metadata is to crawl for the second Web site metadata format, the sitemaps format. As shown in
Figure 4, the likelihood of a Web site providing sitemaps is much lower than that of it providing a robots.txt
file, but on the other hand, the information found in sitemaps typically is more valuable, because it is much
more specific in listing a Web site’s actual page URIs, whereas robots.txt files typically only specify a small
number of URI prefixes.

While we depend on sitemaps being available through robots.txt files, this only provides access to a
subset of available sitemap information. Web sites can also directly make sitemaps available to crawlers by
uploading them or pinging crawlers to download a sitemap. However, these two methods depend on the Web
site explicitly cooperating with the crawler, and therefore is not available to crawlers which have to depend
on publicly available information.

Figure 2 shows an overview of the complete crawling process as it starts with the domain dataset and
eventually creates a dataset of Web page URIs from those domains. In the starting dataset of 44,832
robots.txt files, 6,268 files (14%) contained Sitemap fields, for a total of 10,029 fields (it is legal for
robots.txt files to reference more than one sitemap file; we found one pointing to 530 sitemap files).

10000

t
Fi
le
s

100

1000

o
b

o
t

s
.

t
x

t

10

um
be

r
of
 r

o

1

1 10 100 1000

Number of Sitemap Fields

N
u

Number of Sitemap Fields

Figure 9: Sitemap Fields per robots.txt File

Figure 9 shows the distribution of robots.txt files according to how many references to sitemaps they
contained (robots.txt files with no references are not shown in this figure). The vast majority of robots.txt
files (5,710 or 91%) specify only one sitemap reference, but there also is a considerable number of robots.txt
files pointing to more than one sitemap file.

The sitemap format specifies two kinds of files: Index files and Sitemaps. Index files do not contain Web

12

3.4 Crawling for Sitemaps 3 QUANTIFYING METADATA

Level 0 1 2 3 4
#Files 9,081 90,512 43,044 533 510

Table 4: Indirection Level of Sitemap Information

page URIs, they simply point to other sitemap files (they may point to index files, allowing hierarchies of
index files); they always use an XML syntax. Table 4 shows the levels of indirections found when crawling for
sitemap files, where the indirection level indicates how many index files had to be traversed to the ultimate
sitemap file containing a site’s page URIs.

Sitemaps can use XML, plain text, or a feed format (RSS 2.0 or Atom) as their syntax. Both kinds of
sitemap files may be gzip-compressed. There are size limitations limiting a sitemap file to no more than
50,000 URIs and no more than 10MB in size. Furthermore, there are size limitations limiting an index file
to no more than 1,000 URIs and no more than 10MB in size. For compressed files, these size limits apply to
the uncompressed files.

The first task when crawling for sitemaps is to navigate sitemap indices and sitemap files, so that all
sitemap information for a given site can be retrieved. Here is a collection of the most frequent error conditions
when requesting or processing sitemap files:

• Sitemap Variants: The sitemap format does not explicitly support different variants of a sitemap to
be made available. Some sites contain links to .xml and .xml.gz files with the same content, which
results in duplicates and the necessity to deal with these.

• Syntax Issues: A number of sites (slightly more than 1%) assumed that the URI for the sitemaps file(s)
in the robots.txt file should be enclosed in angle brackets, probably because the format description
for the sitemaps file format does show angle brackets and is not sufficiently explicit that these are not
part of the actual syntax.6 For our sitemaps data crawl, we removed the angle brackets and treated
those URIs as if they had been correctly specified.

• Attempted Sitemap Sharing: Many domains, especially those belonging to the same entity (for example,
google.com and google.co.vn) attempt to share sitemap files. The sitemaps formats does not allow
this kind of cross-site references, so it is up to the discretion of the crawler to ignore or use these shared
sitemaps.

• Connection Problems: A number of servers did not properly close the connection, so that connections
would remain open for a long time. Another problem were dropped connections. However, in the vast
majority of cases, connections were handled properly by the crawled servers.

The sitemaps specification is silent on whether index files may point to index files, but since it is not
specifically disallowed, it is probably allowed, and there are sites that make use of that assumption. As one
example of sitemap information crawled from one company, Table 5 shows the number of sitemaps/sitemap
indices for various amazon domains. It also shows the total number of URIs contained in these sitemaps.

Domain #Sitemaps #URIs
amazon.com 4,945 119,346,271
amazon.ca 2,980 96,476,534
amazon.co.jp 2,933 54,487,651
amazon.co.uk 3,177 44,668,202
amazon.fr 378 15,571,351
amazon.de 3,108 2267

Table 5: Sitemap Information about amazon Domains

Amazon is a good example for the Deep Web motivation described in Section 1. Amazon has a large
number of products available through it’s Web site, but most pages are dynamically generated and not
statically linked from anywhere. Thus, to make all of these pages available to crawlers, all of these product
pages must be listed in sitemaps.

6The syntax to be used is described as “Sitemap: <sitemap location>” in the definition of how to specify a sitemap
location in a robots.txt file.

7Many download errors were encountered.

13

3.5 Access Controlled Sitemaps 3 QUANTIFYING METADATA

3.5 Access Controlled Sitemaps

Starting from the 10,029 references to sitemap files found in robots.txt files, the crawling process produced
70,984 successful file downloads of 60,321 distinct files; there were also a number of errors, summarized in
Figure 10. Most common errors were timeout errors, which is expected because of our strict 30s timeout
policy. There were also a significant number of 404 (Unavailable) errors.

1490

1200

1400

1600

540

111
19

0

200

400

600

800

1000

Timeout HTTP 404 HTTP 403 Others

Figure 10: Sitemap Download Errors Encountered

robots.txt files are usually openly available, and in principle, the same can be said about sitemaps.
However, it seems that some of them are not only unavailable (as signaled by a 404 error), but access
controlled. For 111 sitemap files, our crawler received 403 (Forbidden) responses. One interesting question
is why sites might access control sitemap files, because we ran into various combinations of HTTP status
codes and redirects which indicated that access control might be in place.

Sitemaps might expose more of a site’s structure than a site would like to make public, for example a
complete set of accounts if a social networking site exposes all accounts as URIs. One the one hand, the site
might be interested to make these pages available to search engines; on the other hand, it might want to
make harvesting of all the accounts a little less easy than just reading sitemaps. In this case, access control
could be based on implicit authentication such as through well-know IP addresses of authorized crawlers.
We don’t think that access controlled sitemaps will use HTTP authentication, and we received only very few
HTTP-level authentication responses in the form of 401 (Unauthorized).

We believe that for brick and mortar businesses, there is probably little incentive to access control sitemap
information, because the Web site is only providing representations for goods or services that extend beyond
the Web. On the other hand, typical Web 2.0 businesses often do not provide any physical goods or services,
so for them, the Web representations often are close to the essence of what they are and do. For these
businesses, exposing this information in a machine-readable way is a more critical decision, and therefore
they might make the decision to only disclose it to trusted clients, such as crawlers of major search engines.

3.6 Sitemaps Data Analysis

A somewhat surprising discovery is that some big sites do not have any sitemap information. ebay and
yahoo are two examples. Contrast ebay to amazon, which has by far the largest number of page URIs in its
sitemaps. Furthermore, many big sites are only marginally present: Our crawler discovered only 147 URIs
for microsoft. The reason for this is that Microsoft specifies sitemaps for only a small fraction of its site.

To better understand the usage of sitemap files, it is interesting to look at how many sitemap files an
average domain has, and what the distribution is of the number of sitemap files for those domains using
sitemaps. Figure 11 shows this distribution. The horizontal axis shows the rank of a domain in terms of
the number of sitemap files this domain uses. The vertical axis shows the number of sitemap files for that
domain. Of the 5,303 domains included in that figure, the majority (3,880 or 73.2%) use just one sitemap
file; but there is a heavy-tail distribution of domains using more than just one sitemap file. Furthermore,
there is a small number of outliers which use an exceptionally high number of sitemap files.

14

3.6 Sitemaps Data Analysis 3 QUANTIFYING METADATA

1000

10000
Si
te
m
ap

s

1

10

100

1 10 100 1000 10000

N
um

be
r o

f S

Rank (Number of Sitemaps)

Figure 11: Distribution of Sitemaps Across Domains

Domain #Sitemaps
1. pricecheck.co.za 5,006
2. ricardo.ch 5,000
3. amazon.com 4,945
4. mailonsunday.co.uk 3,395
5. amazon.co.uk 3,177
6. amazon.de 3,108
7. amazon.ca 2,980
8. amazon.co.jp 2,933
9. alacrastore.com 1,644

10. motofakty.pl 1,505

Table 6: Top 10 Domains for #Sitemaps/Domain

Table 6 shows the top ten domains in terms of number of sitemaps.8 While amazon, ricardo (an
auction site), and pricecheck are somewhat expected, somewhat surprising is the presence of the news site
mailonsunday, which seems to have one sitemap file per calendar day. Each file lists the articles that were
published on that day. This example contrasts the variance in sitemap organization: amazon uses a large
number of sitemap files because of its sheer size; mailonsunday uses a large number of files in order to better
organize its URIs in sitemaps. We discuss the distribution of URIs per sitemap in detail below.

Continuing from the question of sitemap files per domain (as shown in Figure 11), the next question then
is how many URIs are eventually listed in these files? Figure 12 shows the distribution of domains based
on how many URIs are specified for them in sitemap files (vertical axis), and how many domains with this
many URIs exist. The horizontal axis then ranks the domains according to the number of URIs for them.
As shown in Table 5, amazon.com is the highest ranked domain listing 119,346,271 URIs in its sitemap files
(in fact, the top three ranked domains in this figure are the top three domains from Table 5). Another way
to look at the same dataset and distribution would be to ask how much of the entire set of URIs contained
in sitemaps (836,260,857 URIs) is covered by which share of sites publishing large sitemaps.

Figure 13 shows this coverage of the complete URI dataset by ranking how much domains contribute to
covering that dataset. It starts with amazon.com’s 119,346,271 URIs, and continues to grow logarithmically
until it gets to the point where domains only specify increasingly smaller URI sets and thus contribute almost
nothing to the overall coverage. Since the plot is a straight line, it shows that the distribution of URIs across
domains is neither exponential y = eλx (in which case, this distribution would have been skewed with more
weight toward the origin) nor a power law y = x−λ (in which case, this distribution would have been skewed
away from the origin).

8The top ten are the easily recognizable outliers visible in Figure 11.

15

3.6 Sitemaps Data Analysis 3 QUANTIFYING METADATA

1 00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09
f U

RI
s

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1 10 100 1000 10000

N
um

be
r o

f

Rank (Number of URIs)

Figure 12: Distribution of URIs Across Domains

5.00E+08

6.00E+08

7.00E+08

8.00E+08

9.00E+08

be
r
of
 U
RI
s

0.00E+00

1.00E+08

2.00E+08

3.00E+08

4.00E+08

1 10 100 1000 10000

To
ta
l N

um
b

Number of Domains

Figure 13: Cumulative View of Figure 12

To better understand how sitemap files are used on average, it is interesting to analyze the usage of
sitemap files for managing large sets of URIs. Figure 14 plots the number of URIs in sitemaps versus the
number of sitemap files used for storing these URIs. In theory, there should be no data point above the
50,000 URI mark on the 1 sitemap file line, because of the 50,000 URI per sitemap file limit specified by the
sitemaps format.

There is much diversity in how sites beyond 100,000 URIs divide their URIs into sitemap files. For exam-
ple, pt.anuncioo.com has a sitemap file with more than 200,000 URIs.9 On the other extreme, ricardo.ch
divides its 549,637 URIs into 4,911 files. Really large sites tend to use uniformly large (usually close to the
maximum size of 50,000 URIs) sitemap files. Some of the outliers in the bottom right part of the figure are
most likely caused by domains where we did have a substantial amount of sitemap files, but downloading
the actual files (and then counting the URIs) failed due to timeouts.

As the final analysis of the sitemap data, Figure 15 shows the distribution of the average number of URIs
per sitemap file. Since the vertical axis is logarithmic and the horizontal axis is linear, it is clear that this
distribution is mostly exponential, except at the tail, where it is super-exponential. Each data point in that

9Which is a violation of the sitemaps format that specifies a maximum of 50,000 URIs per file.

16

4 USEFUL LINKS

1 00E 06

1.00E+07

1.00E+08

1.00E+09
Is

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1 10 100 1000 10000

N
um

be
r o

f U
RI

Number of Sitemap Files

Figure 14: Number of URIs vs. Sitemap Files

1000

10000

100000

1000000

te
m
ap

 F
ile

0.01

0.1

1

10

100

1000

0 500 1000 1500 2000 2500 3000 3500

N
um

be
r o

f U
RI
s
pe

r
Si
t

Rank (Number of URIs per Sitemap File)

Figure 15: Average URIs per Sitemap File

figure is per domain, which explain data points with less than one URI per sitemap file; these are domains
that use index files, but the count of actual page URIs was very low (which may be due to the sitemap access
problems mentioned earlier).

4 Useful Links

In this section, we report results of applying our ulink generation algorithm (as described in Section 2.4) to
those websites for which our crawler successfully crawled sitemap information.

17

4.1 Tree Statistics 4 USEFUL LINKS

4.1 Tree Statistics

The URI prefix tree constructed is a representation of the navigational structure of the website. We first
present some statistics about the trees that we computed. In these results, we only include those sites for
which the crawler managed to download some sitemaps and the sitemaps had a nontrivial number of URIs.

Figure 16 shows the distribution of tree sizes (in terms of the number of nodes). Note the two plateaus at

Figure 16: Total nodes per level in the URI prefix trees.

roughly 20K and 40K. These are artifacts of using a maximum of 20K URIs per tree. Why? Consider sites
whose URI prefix tree has a small number (<< 20K) internal nodes and a very large (>> 20K) number of
leaf nodes. If we sample 20K nodes from such a tree, then we would get roughly 20K leaf nodes and a small
number of internal nodes. Hence the plateau at around 20K. Now consider sites all of whose URIs are the
following format: http://a/b/x/y where x and y are unique for each URI, but a and b are not. Adding
each URI adds roughly 2 nodes to the prefix tree. Thus, the total number of nodes is around 40K. This
corresponds to the plateau at 40K.

Figure 17 shows the distribution of tree depth across the trees. This plot might be a bit misleading.
Namely, for sites that have a large depth, it does not give the distribution of depths across nodes. It might
be that a site with depth 15 has only one node at that depth. A better picture emerges if look at the number
of nodes at various depths. In the following 2 plots, we aggregate the number of nodes per level. Figure 18
shows the number of nodes per level, while Figure 19 shows the number of leaves per level.

In both these plots, level 0 has a relatively small number of root nodes. The root node corresponds to
the domain names—www.amazon.com for the site http://www.amazon.com. Note that some sites can have
multiple domain names, so the number of root nodes is strictly greater than the number of sites for which we
have information. Of the 5374 sites for which we managed to successfully download sitemap files, 2433 sites
had no URIs. The remaining 2941 sites correspond to 7271 root nodes. The maximum depth we noticed was
surprisingly large—402. Some websites have really large URIs. Examples of such sites include www.nhl.com.

18

4.2 Ulinks vs Sitelinks 4 USEFUL LINKS

Figure 17: Depth distribution of URI trees.

Further, from these plots it is clear that a large number of sites have a relatively simple URI structure:
http://domain/a or http://domain/a/b.

4.2 Ulinks vs Sitelinks

Recall that one of the main reasons for using sitemap information is to see if sitemap information alone gives
us good enough navigational structure. To this end, we compare the set of ulinks generated with the set of
sitelinks that Google shows. Notice that one major difference between our ulinks and Google’s sitelinks is a
ulink is simply a URI. A sitelink, on the other hand, is a URI and an anchor text. For example, one of the
sitelinks shown in Figure 1 has URI http://www.ischool.berkeley.edu/programs/masters and anchor
[Master’s Program]. Finding appropriate anchor texts for sitelink URIs is beyond the scope of this project.
So, when we compare Google’s sitelinks to our ulinks, we compare just the URIs.

We found examples where our ulink generation produced reasonable results, but Google’s sitelinks does
not. One such site is www.citibank.com. Google’s search results do not show any sitelinks for queries
[www.citibank.com], [citibank], or [citibank.com]. Our ulink generator produces the following as top 5
results:

1. http://https://web.da-us.citibank.com/cgi-bin/citifi/scripts/help_desk/

2. http://https://web.da-us.citibank.com/cgi-bin/citifi/scripts/prod_and_service/

3. http://https://web.da-us.citibank.com/cgi-bin/citifi/scripts/plan_and_tools/

4. http://https://web.da-us.citibank.com/cgi-bin/citifi/portal/

5. http:///https://www.thankyounetwork.com/

19

http://https://web.da-us.citibank.com/cgi-bin/citifi/scripts/help_desk/
http://https://web.da-us.citibank.com/cgi-bin/citifi/scripts/prod_and_service/
http://https://web.da-us.citibank.com/cgi-bin/citifi/scripts/plan_and_tools/
http://https://web.da-us.citibank.com/cgi-bin/citifi/portal/
http:///https://www.thankyounetwork.com/

4.2 Ulinks vs Sitelinks 4 USEFUL LINKS

Figure 18: Total nodes per level in the URI prefix trees.

While it is difficult to argue that these are the best results, it is easy to see that these pages are important
and useful pages for visitors to the site.

Another example is that of www.pcworld.com. For this query google does generate sitelinks but we
believe we do a better job in displaying the navigation structure of pcworld.com’s website. The top five
sitelink on Google are:

1. http://pcworld.com/downloads/downloads.html

2. http://pcworld.com/products/peripherals/printers.html

3. http://pcworld.com/howto.html

4. http://pcworld.com/article/123867/top_10_ultraportable_laptops.html

5. http://pcworld.com/products/computers/desktops.html

While our ulink generator produces the following as top 5 results:

1. http:///www.pcworld.com/businesscenter/

2. http:///www.pcworld.com/reviews.html

3. http:///www.pcworld.com/news.html

4. http:///www.pcworld.com/howto.html

5. http://pcworld.com/blogs.html

20

http://pcworld.com/downloads/downloads.html
http://pcworld.com/products/peripherals/printers.html
http://pcworld.com/howto.html
http://pcworld.com/article/123867/top_10_ultraportable_laptops.html
http://pcworld.com/products/computers/desktops.html
http:///www.pcworld.com/businesscenter/
http:///www.pcworld.com/reviews.html
http:///www.pcworld.com/news.html
http:///www.pcworld.com/howto.html
http://pcworld.com/blogs.html

4.2 Ulinks vs Sitelinks 4 USEFUL LINKS

Figure 19: Total nodes per level in the URI prefix trees.

Again, it is difficult to argue that this is the optimum result but if we do look at the navigational structure of
www.pcworld.com we see that our ulink generator provides relevant structure as compared to that of Google.

Yet another example is that of the website www.dog.com where we generate the same site links that Google
does for the website www.dog.com.The results are comparable. Google produces the follwing sitelinks as their
top 5 results:

1. http://www.dog.com/Breeds/Default.aspx

2. http://www.dog.com/dog-beds/

3. http://www.dog.com/collars-leashes-and-tags/

4. http://www.dog.com/dog-clothes/

5. http://www.dog.com/dog-toys/

Compare that to the top-5 results from our ulink generator:

1. http:///www.dog.com/Breeds/

2. http:///www.dog.com/dog-articles/

3. http:///www.dog.com/dog-treats/

4. http:///www.dog.com/collars-leashes-and-tags/

5. http:///www.dog.com/dog-toys/

21

http://www.dog.com/Breeds/Default.aspx
http://www.dog.com/dog-beds/
http://www.dog.com/collars-leashes-and-tags/
http://www.dog.com/dog-clothes/
http://www.dog.com/dog-toys/
http:///www.dog.com/Breeds/
http:///www.dog.com/dog-articles/
http:///www.dog.com/dog-treats/
http:///www.dog.com/collars-leashes-and-tags/
http:///www.dog.com/dog-toys/

4.3 Improving Ulinks 4 USEFUL LINKS

This is an example where our ulinks and Google’s sitelinks are quite similar.
There are several sites for which the ulink generation has lower quality than sitelinks. One such example

is that of the website www.zvents.com. Google produces the follwing sitelinks as their top 5 results:

1. http://corporate.zvents.com/

2. http://www.zvents.com/movies

3. http://www.zvents.com/restaurants

4. http://www.zvents.com/search?cat=7

5. http://www.zvents.com/listings

Our ulink generator produces the following as the top 5 results:

1. http:///www.zvents.com/san-francisco-ca/

2. http:///www.zvents.com/chicago-il

3. http:///www.zvents.com/new-york-ny/

4. http:///www.zvents.com/london-england/

5. http:///www.zvents.com/los-angeles-ca/

zvents.com is an event aggregator. Note how the ulink generator fails to select different categories of events,
which are arguably more useful than pages corresponding to events from different cities.

An interesting example where our tree folding algorithm fails is for mp3va.com. Our top-5 ulinks are:

1. http:///www.mp3va.com/upcoming_albums/,

2. http:///www.mp3va.com/release/1010895/,

3. http:///www.mp3va.com/release/1010896/,

4. http:///www.mp3va.com/release/1010897/, and

5. http:///www.mp3va.com/release/1010898/.

The reason we do not fold the release node is because doing so would drop the total number of nodes below
our threshold. This problem might be fixed if we relax our minimum nodes requirement.

4.3 Improving Ulinks

The comparison of ulinks and sitelinks shows that even though ulink quality is worse than sitelinks, the
approach of finding ulinks using only sitemap information is promising. Certainly, if we could reliably
and accurately infer ulink information using only sitemaps information, it would help both the sites, who
would have more control over how users perceive their site and the users who use browsing mode more than
searching mode.

Our ulink generation uses only the hierarchical structure. It does not use, for example, the priority
and lastmod fields that can be optionally specified in sitemap files. A system that uses these fields might
be more accurating at selecting ulinks.

Beyond using fields that are already present in the sitemap protocol, we propose adding another optional
field to the sitemap protocol—title text. This field would let site publishers associate titles with pages, which
would help ulink generation generate anchor text much like sitelinks produces. Instead of one title text per
URI, an alternate approach would be allow key phrases (or tags) to be attached to URIs.

22

http://corporate.zvents.com/
http://www.zvents.com/movies
http://www.zvents.com/restaurants
http://www.zvents.com/search?cat=7
http://www.zvents.com/listings
http:///www.zvents.com/san-francisco-ca/
http:///www.zvents.com/chicago-il
http:///www.zvents.com/new-york-ny/
http:///www.zvents.com/london-england/
http:///www.zvents.com/los-angeles-ca/
zvents.com
mp3va.com
http:///www.mp3va.com/upcoming_albums/
http:///www.mp3va.com/release/1010895/
http:///www.mp3va.com/release/1010896/
http:///www.mp3va.com/release/1010897/
http:///www.mp3va.com/release/1010898/
release

7 CONCLUSION

5 Related Work

Regarding the analysis of robots.txt files, there is early work based on a rather small sample [5] (164 sites),
and a specific analysis of corporate Web sites [7], also using a small sample (60 sites), and manual analysis
of the results. This early work has been limited by much lower adoption of robots.txt files, and by the
scale of the studies.

More recently, a study of initially only 8’000 sites [13, 14] has been extended in the BotSeer project and
now covers 13.2 million sites [12]. Their finding (in the initial 8’000 site study) of a 38.5% adoption rate of
robots.txt files is a little bit smaller than our average of 45.1%, which might be explained by the study’s
date (October 2006), and also by the fact that the study did not start with the most popular domains,
which probably have a higher adoption rate. At the time of writing, the BotSeer Web page reports 2’264’820
robots.txt files from 13’257’110 Web sites, which translates to a 17% adoption rate; this considerably lower
number may be explained by the fact that the large set of Web sites necessarily contains many rather small
sites, which in many cases do not configure robots.txt files. In addition to crawling for robots.txt files,
BotSeer is able to look at the dynamic behavior of crawler by setting up honeypot sites. These sites use
robots.txt files and act as regular Web sites. BotSeer then logs how ethically crawlers act, i.e. how much
of the restrictions defined in robots.txt they actually respect. This study of crawler behavior is something
that is outside of our scope.

The Web Modeling Language (WebML) [4] is an approach to capture the structure of a Web site in a
declarative way; it thus would be an ideal starting point for publishing information about site’s structure
(we do not know how far WebML provides support for this functionality, though). More generally, almost all
Content Management Systems (CMS) have metadata about a site’s content and structure and many support
exposing this as robots.txt and/or sitemaps. As a popular example, the Drupal CMS supports a module
for publishing sitemaps (initially named Google Sitemap, the module has been renamed to XML Sitemap).

We believe that once the users of richer Web site metadata are there (in the form of crawlers or browsers),
it will be easily possible for many Web sites to automatically make that information available. A study by
Danielson [6] has shown that a more structured overview of a Web site can help significantly in many tasks
when interacting with a Web site; however, most approaches for Web site navigation only look at it as a
per-site task, rather than looking at it as a fundamental way of how to interact with Web-based information.

To our knowledge, there is no related work in the overlap of the two areas described above, which is our
eventual target area: The overlap of crawler-oriented site metadata often investigated in IR-oriented research,
and the HCI-oriented question of how to make site metadata available to support navigational tasks on Web
sites. Some prior work about looking at the Web graph in general [11] does discuss some questions relevant
for our approach, though (specifically, the “URL split” technique presented in that paper). Surprisingly, even
the otherwise detailed Web Content Accessibility Guidelines (WCAG) [2] say little about how to implement
Web site navigation in an accessible may, they are mostly concerned with looking at individual Web pages.

6 Future Work

The work presented in this paper is the first stage of a research project that aims at making metadata about
Web site structure available on the Web. We have analyzed the current formats and data and have some
recommendations for extending the sitemap format. The next step would be to setup an experimental service
that provides access to data-mined navigational metadata, and to make that data available in a browser. A
browser could use the two possible data sources mentioned above, first looking for authoritative navigational
metadata provided by the site itself, and then accessing a third-party service inquiring about data-mined
navigational metadata. This approach supports a transition strategy to a Web where sites can make their
navigational metadata available, but if they don’t do it, there still is a fallback provided by a third party.

7 Conclusion

This paper presents detailed analyses of the current availability of Web site metadata. The analyses are based
on a starting set of the 100,000 most popular domains, and use data these sites make available through their
robots.txt files and sitemaps. The analyses show that there is a wealth of Web site metadata available,
even though currently its sole purpose is to control and steer Web crawlers. Furthermore, we asked how the
sitemap format can be improved and to uncover issues, we designed a useful link generator based solely on
the sitemap information that websites provide. Based on our analysis, we conclude that even though much

23

REFERENCES

information can be obtained from sitemap files, users and websites can be helped much more if more sites
make sitemaps available and if the sitemap format itself is extended, for example, to include title text in
addition to URIs.

8 Acknowledgment

I would like to thank my advisor, Prof. Eric Wilde, for his guidance during this project. I would also like to
thank Alexa for providing us their dataset of the most popular 100,000 domains.

References

[1] Alexa.

[2] Ben Caldwell, Michael Cooper, Loretta Guarino Reid, and Gregg Vanderheiden. Web
Content Accessibility Guidelines 2.0. World Wide Web Consortium, Candidate Recommendation CR-
WCAG20-20080430, April 2008.

[3] L. Castro, W. Lin, and B. Gomes. Systems and methods for providing search results, 2006.

[4] Stefano Ceri, Piero Fraternali, and Maristella Matera. Conceptual Modeling of Data-
Intensive Web Applications. IEEE Internet Computing, 6(4):20–30, 2002.

[5] Grégory Cobéna, Talel Abdessalem, and Yassine Hinnach. WebWatching UK Web Com-
munities: Final Report For The WebWatch Project. Technical Report British Library Research and
Innovation Report 146, British Library Research and Innovation Centre, July 1999.

[6] David R. Danielson. Web Navigation and the Behavioral Effects of Constantly Visible Site Maps.
Interacting with Computers, 14(5):601–618, October 2002.

[7] M. Carl Drott. Indexing Aids at Corporate Websites: The Use of Robots.txt and META Tags.
Information Processing and Management, 38(2):209–219, March 2002.

[8] Bin He, Mitesh Patel, Zhen Zhang, and Kevin Chen-Chuan Chang. Accessing the Deep Web.
Communications of the ACM, 50(5):94–101, May 2007.

[9] Martijn Koster. A Method for Web Robots Control. Internet Draft draft-koster-robots-00, December
1996.

[10] Gautam Pant, Padmini Srinivasan, and Filippo Menczer. Crawling the Web. In Mark Lev-
ene and Alexandra Poulovassilis, editors, Web Dynamics: Adapting to Change in Content, Size,
Topology and Use, pages 153–178. Springer-Verlag, Berlin, Germany, November 2004.

[11] Sriram Raghavan and Hector Garcia-Molina. Representing Web Graphs. In Umeshwar Dayal,
Krithi Ramamritham, and T. M. Vijayaraman, editors, Proceedings of the 19th International
Conference on Data Engineering, pages 405–416, Bangalore, India, March 2003. IEEE Computer Society
Press.

[12] Yang Sun, Isaac G. Councill, and C. Lee Giles. BotSeer: An Automated Information System
for Analyzing Web Robots. In Proceedings of the 8th International Conference on Web Engineering,
Yorktown Heights, NY, July 2008.

[13] Yang Sun, Ziming Zhuang, Isaac G. Councill, and C. Lee Giles. Determining Bias to Search
Engines from Robots.txt. In Proceedings of the 2007 IEEE/WIC/ACM International Conference on
Web Intelligence, pages 149–155, Silicon Valley, California, November 2007.

[14] Yang Sun, Ziming Zhuang, and C. Lee Giles. A Large-Scale Study of Robots.txt. In Poster
Proceedings of the 16th International World Wide Web Conference, pages 1123–1124, Banff, Alberta,
May 2007. ACM Press.

24

	Introduction
	System Design
	Quantifying Metadata
	Useful Links
	Related Work
	Future Work
	Conclusion
	Acknowledgment

