Information Course Schedule Spring 2019
Upper-Division
Surveying history through the lens of information and information through the lens of history, this course looks across time to consider what might distinguish ours as “the information age” and what that description implies about the role of “information technology” across time. We will select moments in societies’ development of information production, circulation, consumption, and storage from the earliest writing and numbering systems to the world of Social Media. In every instance, we’ll be concerned with what and when, but also with how and why. Throughout we will keep returning to questions about how information-technological developments affect society and vice versa?
Three hours of lecture per week. Methods and concepts of creating design requirements and evaluating prototypes and existing systems. Emphasis on computer-based systems, including mobile system and ubiquitous computing, but may be suitable for students interested in other domains of design for end-users. Includes quantitative and qualitative methods as applied to design, usually for short-term term studies intended to provide guidance for designers. Students will receive no credit for 114 after taking 214.
This course applies economic tools and principles, including game theory, industrial organization, information economics, and behavioral economics, to analyze business strategies and public policy issues surrounding information technologies and IT industries. Topics include: economics of information goods, services, and platforms; economics of information and asymmetric information; economics of artificial intelligence, cybersecurity, data privacy, and peer production; strategic pricing; strategic complements and substitutes; competition and antitrust; Internet industry structure and regulation; network cascades, network formation, and network structure.
This course introduces students to practical fundamentals of data mining and machine learning with just enough theory to aid intuition building. The course is project-oriented, with a project beginning in class every week and to be completed outside of class by the following week, or two weeks for longer assignments. The in-class portion of the project is meant to be collaborative, with the instructor working closely with groups to understand the learning objectives and help them work through any logistics that may be slowing them down. Weekly lectures introduce the concepts and algorithms which will be used in the upcoming project. Students leave the class with hands-on data mining and data engineering skills they can confidently apply.
Graduate
This course is designed to be an introduction to the topics and issues associated with information and information technology and its role in society. Throughout the semester we will consider both the consequence and impact of technologies on social groups and on social interaction and how society defines and shapes the technologies that are produced. Students will be exposed to a broad range of applied and practical problems, theoretical issues, as well as methods used in social scientific analysis. The four sections of the course are: 1) theories of technology in society, 2) information technology in workplaces 3) automation vs. humans, and 4) networked sociability.
This course uses examples from various commercial domains — retail, health, credit, entertainment, social media, and biosensing/quantified self — to explore legal and ethical issues including freedom of expression, privacy, research ethics, consumer protection, information and cybersecurity, and copyright. The class emphasizes how existing legal and policy frameworks constrain, inform, and enable the architecture, interfaces, data practices, and consumer facing policies and documentation of such offerings; and, fosters reflection on the ethical impact of information and communication technologies and the role of information professionals in legal and ethical work.
This course addresses concepts and methods of user experience research, from understanding and identifying needs, to evaluating concepts and designs, to assessing the usability of products and solutions. We emphasize methods of collecting and interpreting qualitative data about user activities, working both individually and in teams, and translating them into design decisions. Students gain hands-on practice with observation, interview, survey, focus groups, and expert review. Team activities and group work are required during class and for most assignments. Additional topics include research in enterprise, consulting, and startup organizations, lean/agile techniques, mobile research approaches, and strategies for communicating findings.
Discusses application of social psychological theory and research to information technologies and systems; we focus on sociological social psychology, which largely focuses on group processes, networks, and interpersonal relationships. Information technologies considered include software systems used on the internet such as social networks, email, and social games, as well as specific hardware technologies such as mobile devices, computers, wearables, and virtual/augmented reality devices. We examine human communication practices, through the lens of different social psychology theories, including: symbolic interaction, identity theories, social exchange theory, status construction theory, and social networks and social structure theory.
Three hours of lecture per week. This course applies economic tools and principles, including game theory, industrial organization, information economics, and behavioral economics, to analyze business strategies and public policy issues surrounding information technologies and IT industries. Topics include: economics of information goods, services, and platforms; economics of information and asymmetric information; economics of artificial intelligence, cybersecurity, data privacy, and peer production; strategic pricing; strategic complements and substitutes; competition and antitrust; Internet industry structure and regulation; network cascades, network formation, and network structure.
Information privacy law profoundly shapes how internet-enabled services work. This course translates regulatory demands flowing from the growing field of privacy and security law to those who are creating interesting and transformative internet-enabled services. We focus both on formal requirements of the law and on how technology might accommodate regulatory demands and goals. Topics include: Computer Fraud and Abuse Act, unfair/deceptive trade practices, Electronic Communications Privacy Act, children’s privacy, big data and discrimination, Digital Millennium Copyright Act, intermediary liability issues, ediscovery and data retention, anti-marketing laws, and technical requirements of the European Union-United States Privacy Shield.
The design and presentation of digital information. Use of graphics, animation, sound, visualization software, and hypermedia in presenting information to the user. Methods of presenting complex information to enhance comprehension and analysis. Incorporation of visualization techniques into human-computer interfaces. Three hours of lecture and one hour of laboratory per week.
This course introduces students to practical fundamentals of data mining and machine learning with just enough theory to aid intuition building. The course is project-oriented, with a project beginning in class every week and to be completed outside of class by the following week, or two weeks for longer assignments. The in-class portion of the project is meant to be collaborative, with the instructor working closely with groups to understand the learning objectives and help them work through any logistics that may be slowing them down. Weekly lectures introduce the concepts and algorithms which will be used in the upcoming project. Students leave the class with hands-on data mining and data engineering skills they can confidently apply.
Three hours of lecture per week. Letter grade to fulfill degree requirements. Prerequisites: Proficient programming in Python (programs of at least 200 lines of code), proficient with basic statistics and probabilities. This course examines the state-of-the-art in applied Natural Language Processing (also known as content analysis and language engineering), with an emphasis on how well existing algorithms perform and how they can be used (or not) in applications. Topics include part-of-speech tagging, shallow parsing, text classification, information extraction, incorporation of lexicons and ontologies into text analysis, and question answering. Students will apply and extend existing software tools to text-processing problems.
Three hours of lecture per week. Introduction to relational, hierarchical, network, and object-oriented database management systems. Database design concepts, query languages for database applications (such as SQL), concurrency control, recovery techniques, database security. Issues in the management of databases. Use of report writers, application generators, high level interface generators.
This course will cover new interface metaphors beyond desktops (e.g., for mobile devices, computationally enhanced environments, tangible user interfaces) but will also cover visual design basics (e.g., color, layout, typography, iconography) so that we have systematic and critical understanding of aesthetically engaging interfaces. Students will get a hands-on learning experience on these topics through course projects, design critiques, and discussion, in addition to lectures and readings. Two hours of lecture per week.
Three hours of seminar per week. This seminar reviews current literature and debates regarding Information and Communication Technologies and Development (ICTD). This is an interdisciplinary and practice-oriented field that draws on insights from economics, sociology, engineering, computer science, management, public health, etc.
As new sources of digital data proliferate in developing economies, there is the exciting possibility that such data could be used to benefit the world’s poor. Through a careful reading of recent research and through hands-on analysis of large-scale datasets, this course introduces students to the opportunities and challenges for data-intensive approaches to international development. Students should be prepared to dissect, discuss, and replicate academic publications from several fields including development economics, machine learning, information science, and computational social science. Students will also conduct original statistical and computational analysis of real-world data.
This course is designed to act as a bridge between the understanding of irrational human behavior and its application to real-world design problems. In this class, students will learn to approach product design problems through behavioral economics framework. Using a simple iterative approach for understanding and finding target users and behaviors, they will learn how to develop effective interface designs and build products. Drawing upon our industry experience, the class will follow lean and agile methods such as drafting user flows and identifying obstacles to changing behavior. Alumni from different backgrounds would be invited to talk about their experience tackling behavioral design problems at work. This class is aimed at students interested in product design and product management but anyone with an interest in building modern software systems would benefit from this experience.
For individuals and organizations involved in political advocacy, cybersecurity threats are an increasingly common reality of operating in the digital world. Civil society has always been under attack from ideological, political, and governmental opponents who seek to silence dissenting opinions, but the widespread adoption of connected technologies by the individuals and organizations that make up civil society creates a new class of vulnerabilities.
Citizen Clinic at the Center for Long-Term Cybersecurity provides students with real-world experience assisting politically vulnerable organizations and persons around the world to develop and implement sound cybersecurity practices. Clinic students will participate in both a classroom and clinic component. In the classroom, students will study the basic theories and practices of digital security, the intricacies of protecting largely under-resourced organizations, and the tools needed to manage risk in complex political, sociological, legal, and ethical contexts. In the clinic component, students will work in teams supervised by the Clinic staff to provide direct cybersecurity assistance to civil society organizations. Students’ clinic responsibilities will include learning about an organization’s mission and context, assessing its vulnerabilities, and ultimately recommending and implementing mitigations to the identified security risks. The emphasis will be on pragmatic, workable solutions that take into account the unique operational needs of each client organization.
Weekly lectures will provide students with the background information and tools they will need to engage with clients. Coursework will focus on client-facing, hands-on projects. Students will be expected to work an average of 12 hours per week, although the distribution of this workload may fluctuate based upon the availability and needs of the client. Enrollment will be by application and limited to graduate students and exceptional upper-level undergraduate students. While some background in cybersecurity will be useful for the course, it is not required. Given the interdisciplinary nature of this field, demonstrated ability in technology, law, policy, foreign language, or other applicable skills will also be desirable. All interested students will be placed on the waitlist and then contacted with instructions to apply for admission to the course. Students should be prepared to submit a résumé and a brief explanation of their interest in the Citizen Clinic, as well as a description of any applicable background experience.
Contact Steve Trush with any questions.
The Advanced Citizen Clinic practicum is for students who have already completed Info 289. Public Interest Cybersecurity: The Citizen Clinic Practicum.
For individuals and organizations involved in political advocacy, cybersecurity threats are an increasingly common reality of operating in the digital world. Civil society has always been under attack from ideological, political, and governmental opponents who seek to silence dissenting opinions, but the widespread adoption of connected technologies by the individuals and organizations that make up civil society creates a new class of vulnerabilities. Citizen Clinic at the Center for Long-Term Cybersecurity provides students with real-world experience assisting politically vulnerable organizations and persons around the world to develop and implement sound cybersecurity practices.
Advanced students will spend the majority of their credit hours engaging directly with clients under the supervision of Clinic staff. Emphasis will be on advanced threat research and security mitigations. Enrollment will be by application only. Eligible students will be placed on the waitlist and then contacted with instructions to apply for admission to the course.
Many of us are interested in looking forward towards future challenges and opportunities (near, medium, and occasionally long term) of the information economy and society. But technology prognostication has a terrible track-record. And keying on worst-case and best-case possibilities is an unrealistic, inefficient, and sometimes dangerous way to generate insight. Scenario thinking is an alternate methodology, developed first by Royal Dutch Shell for use in the energy sector after the oil shocks of the 1970s and later extended more broadly to business, government, and non-profit sectors. Scenario thinking starts from the proposition that the future is unpredictable in any meaningful sense… and that it is possible instead to systematically develop a landscape of possible futures from which useful insights can be drawn, and against which strategic action can be planned. In this seminar we will learn, practice, and develop scenario thinking for the information economy and society. We’ll explore the scientific limits of prediction; decision biases in that setting; and alternative methods for gaining and communicating insight that changes what people think and what they do. We’ll develop our own scenarios and use them to explore systematically challenges and opportunities ahead for the things we care about — business ideas, governance challenges, social change, etc. This seminar will call on a high level of energy, creativity, and open-mindedness as well as great teamwork.
This experiential course provides a framework for creating and managing a startup.
Creating a startup
Students will work in teams of 3 to develop an idea that we will work through over the course of the semester. If students are currently working with a startup, they can use that startup for the process as well. We will focus on the business model canvas as a tool to frame product-market fit and teams will be expected to conduct approx 100 stakeholder interviews over the course of the semester.
Managing a startup
Startups are often faced with resource shortages and overwhelmed with work. We will focus on decision making tools to manage both small issues as well as major pivots in product/service strategy to help bring structure to chaos. The course will cover a mix of tools to do this in the areas of project management and problem solving.
The Future of Cybersecurity Reading Group (FCRG) is a two-credit discussion seminar focused on cybersecurity. In the seminar, graduate, professional, and undergraduate students discuss current cybersecurity scholarship, notable cybersecurity books, developments in the science of security, and evolving thinking in how cybersecurity relates to political science, law, economics, military, and intelligence gathering. Students are required to participate in weekly sessions, present short papers on the readings, and write response pieces. The goals of the FCRG are to provide a forum for students from different disciplinary perspectives to deepen their understanding of cybersecurity and to foster and workshop scholarship on cybersecurity.
In this course you’ll learn industry-standard agile and lean software development techniques such as test-driven development, refactoring, pair programming, and specification through example. You’ll also learn good object-oriented programming style. We’ll cover the theory and principles behind agile engineering practices, such as continuous integration and continuous delivery.
This class will be taught in a flip-the-classroom format, with students programming in class. We'll use the Java programming language. Students need not be expert programmers, but should be enthusiastic about learning to program. Please come to class with laptops, and install IntelliJ IDEA community edition. Students signing up should be comfortable writing simple programs in Java (or a Java-like language such as C#).
This course is a survey of web technologies that are used to build back-end systems that enable rich web applications. Utilizing technologies such as Python, Flask, Docker, RDBMS/NoSQL databases, and Spark, this class aims to cover the foundational concepts that drive the web today. This class focuses on building APIs using micro-services that power everything from content management systems to data engineering pipelines that provide insights by processing large amounts of data. The goal of this course is to provide an overview of the technical issues surrounding back-end systems today, and to provide a solid and comprehensive perspective of the web's constantly evolving landscape.
An intensive weekly discussion of current and ongoing research by Ph.D. students with a research interest in issues of information (social, legal, technical, theoretical, etc.). Our goal is to focus on critiquing research problems, theories, and methodologies from multiple perspectives so that we can produce high-quality, publishable work in the interdisciplinary area of information research. Circulated material may include dissertation chapters, qualifying papers, article drafts, and/or new project ideas. We want to have critical and productive discussion, but above all else we want to make our work better: more interesting, more accessible, more rigorous, more theoretically grounded, and more like the stuff we enjoy reading.
One hour colloquium per week. Must be taken on a satisfactory/unsatisfactory basis. Prerequisites: Ph.D. standing in the School of Information. Colloquia, discussion, and readings designed to introduce students to the range of interests of the school.
Topics in information management and systems and related fields. Specific topics vary from year to year. May be repeated for credit, with change of content. May be offered as a two semester sequence.