Information Course Schedule Fall 2023
Upper-Division
This course is a survey of technologies that power the user interfaces of web applications on a variety of devices today, including desktop, mobile, and tablet devices. This course will delve into some of the core front-end languages and frameworks (HTML/CSS/JavaScript/React/Redux), as well as the underlying technologies that enable web applications (HTTP, URI, JSON). The goal of this course is to provide an overview of the technical issues surrounding user interfaces powered by the web today, and to provide a solid and comprehensive perspective of the web’s constantly evolving landscape.
Graduate
Introduces the data sciences landscape, with a particular focus on learning data science techniques to uncover and answer the questions students will encounter in industry. Lectures, readings, discussions, and assignments will teach how to apply disciplined, creative methods to ask better questions, gather data, interpret results, and convey findings to various audiences. The emphasis throughout is on making practical contributions to real decisions that organizations will and should make.
15 weeks; 3 hours of lecture per week. This course introduces the intellectual foundations of information organization and retrieval: conceptual modeling, semantic representation, vocabulary and metadata design, classification, and standardization, as well as information retrieval practices, technology, and applications, including computational processes for analyzing information in both textual and non-textual formats.
This course introduces the basics of computer programming that are essential for those interested in computer science, data science, and information management. Students will write their own interactive programs (in Python) to analyze data, process text, draw graphics, manipulate images, and simulate physical systems. Problem decomposition, program efficiency, and good programming style are emphasized throughout the course.
The ability to represent, manipulate, and analyze structured data sets is foundational to the modern practice of data science. This course introduces students to the fundamentals of data structures and data analysis (in Python). Best practices for writing code are emphasized throughout the course. This course forms the second half of a sequence that begins with INFO 206A. It may also be taken as a stand-alone course by any student that has sufficient Python experience.
This course will provide an introduction to the field of human-computer interaction (HCI). Students will learn to apply design thinking to user experience (UX) design, prototyping, & evaluation. The course will also cover special topic areas within HCI.
This course gives participants hands-on software product design experience based on current industry practice. The course is project-based with an emphasis on iteration, practice, and critique from experienced industry designers. During the course, participants work iteratively on a series of design projects (both solo and in groups) through a full design process, including developing appropriate design deliverables and gathering feedback. We’ll also cover specific topics, including design and prototyping tools, working with and developing design systems, typical phases and deliverables of the design process, and designing in different contexts (e.g., startups vs. larger companies). There will also be guest lectures from industry experts.
This course focuses on the practice of leadership, collaboration, and people management in contemporary, distributed, information and technology-rich organizations. Not just for potential people managers, we start with the premise that a foundation in leadership, management, and collaboration is essential for individuals in all roles, at any stage of their career. To build this foundation we will take a hybrid approach, engaging literature from disciplines such as social psychology, management, and organizational behavior, as well as leveraging case studies and practical exercises. The course will place a special emphasis on understanding and reacting to social dynamics in workplace hierarchies and teams.
This course is a survey of technologies that power the user interfaces of web applications on a variety of devices today, including desktop, mobile, and tablet devices. This course will delve into some of the core front-end languages and frameworks (HTML/CSS/JavaScript/React/Redux), as well as the underlying technologies that enable web applications (HTTP, URI, JSON). The goal of this course is to provide an overview of the technical issues surrounding user interfaces powered by the web today, and to provide a solid and comprehensive perspective of the web’s constantly evolving landscape.
Three hours of lecture per week. Letter grade to fulfill degree requirements. Prerequisites: Proficient programming in Python (programs of at least 200 lines of code), proficient with basic statistics and probabilities. This course examines the state-of-the-art in applied Natural Language Processing (also known as content analysis and language engineering), with an emphasis on how well existing algorithms perform and how they can be used (or not) in applications. Topics include part-of-speech tagging, shallow parsing, text classification, information extraction, incorporation of lexicons and ontologies into text analysis, and question answering. Students will apply and extend existing software tools to text-processing problems.
Students will receive no credit for C262 after taking 290 section 4. Three hours of lecture and one hour of laboratory per week. This course explores the theory and practice of Tangible User Interfaces, a new approach to Human Computer Interaction that focuses on the physical interaction with computational media. The topics covered in the course include theoretical framework, design examples, enabling technologies, and evaluation of Tangible User Interfaces. Students will design and develop experimental Tangible User Interfaces using physical computing prototyping tools and write a final project report. Also listed as New Media C262.
Three hours of lecture per week. Introduction to many different types of quantitative research methods, with an emphasis on linking quantitative statistical techniques to real-world research methods. Introductory and intermediate topics include: defining research problems, theory testing, causal inference, probability and univariate statistics. Research design and methodology topics include: primary/secondary survey data analysis, experimental designs, and coding qualitative data for quantitative analysis. No prerequisites, though an introductory course in statistics is recommended.
Three hours of lecture per week. Theory and practice of naturalistic inquiry. Grounded theory. Ethnographic methods including interviews, focus groups, naturalistic observation. Case studies. Analysis of qualitative data. Issues of validity and generalizability in qualitative research.
New Venture Discovery introduces students to the process of launching an information-intensive venture — a social enterprise, business startup, or venture inside an established organization. It is motivated by the recognition that new enterprises fail more often from lack of customers than flaws in technology or product development. The course takes an iterative, design-oriented, and feedback-driven approach to the search process: identifying a problem or need to address, developing a prototype, discovering customers, refining the concept, testing and validating demand, and developing a sustainable business model.
This course provides students with real-world experience assisting politically vulnerable organizations and persons around the world to develop and implement sound cybersecurity practices. In the classroom, students study basic theories and practices of digital security, intricacies of protecting largely under-resourced organizations, and tools needed to manage risk in complex political, sociological, legal, and ethical contexts. In the clinic, students work in teams supervised by Clinic staff to provide direct cybersecurity assistance to civil society organizations. We emphasize pragmatic, workable solutions that take into account the unique needs of each partner organization.
How do you create a concise and compelling User Experience portfolio? Applying the principles of effective storytelling to make a complex project quickly comprehensible is key. Your portfolio case studies should articulate the initial problem, synopsize the design process, explain the key decisions that moved the project forward, and highlight why the solution was appropriate. This course will include talks by several UX hiring managers who will discuss what they look for in portfolios and common mistakes to avoid.
Students should come to the course with a completed project to use as the basis for their case study; they will finish with a completed case study and repeatable process. Although this class focuses on UX, students from related fields who are expected to share examples and outcomes of past projects during the interview process (data science, product management, etc.) are welcome to join.
The Future of Cybersecurity Working Group (FCWG) assembles students, researchers, and faculty from across the campus with a shared interest in security. We read and discuss the current cybersecurity scholarship and workshop projects related to cybersecurity. Our goal is to support critical inquiry into security and explore how it relates to political science, law, economics, the military, and intelligence gathering. Students are required to participate in weekly sessions, present short papers on the readings, and write response pieces.
In the dynamic and interdisciplinary world where MIMS graduates operate, the ability to consult, pitch, and communicate effectively is paramount. While technological details come and go, these skills remain central to fulfilling interactions with various types of stakeholders, including colleagues, leadership, clients, customers, subject matter experts, as well as one’s broader network on social media. In this world increasingly driven by digital transformation and interdepartmental and cross-functional collaboration, mastering the art of impactful communication becomes not just an advantage, but a necessity.
This course delves into this interdisciplinary nexus with the goal of providing practical and applicable knowledge and techniques, emphasizing the invaluable skill of articulating complex technological concepts to a diverse audience. The course, then, is designed to equip students with the tools and strategies to bridge gaps, influence decisions, and drive innovation through the power of effective communication, including in the creation of one’s own voice and branding.
Focusing on real-world scenarios and practical exercises, students will cultivate both technical and non-technical abilities essential for tech professionals and leaders. The final presentation acts as a summative opportunity to amalgamate core concepts and techniques acquired throughout the program. Projects are built around real-world scenarios and case studies. The course emphasizes enhancing students’ presentation, strategic, and organizational skills, paving the way for their success in the ever-evolving consulting landscape.
This course is designed to give participants a practical overview of the modern lean/agile product management paradigm based on contemporary industry practice. We cover the complete lifecycle of product management, from discovering your customers and users through to sales, marketing and managing teams. We'll take an experimental approach throughout, showing how to minimize investment and output while maximizing the information we discover in order to support effective decision-making. During the course, we'll show how to apply the theory through hands-on collaborative problem-solving activities. There will also be guest lectures from industry experts.
This course explores transformations of the information ecosystem in recent decades. Starting with the origins of the internet, and a theoretical framing of the issues, the focus is on the interaction of technical architecture, public policy and law, corporate business models, and societal norms in reshaping the information environment. In addition to looking at foundational policy such as Section 230 of the Communications Decency Act, the course traces the growth of online misinformation and disinformation, algorithmic amplification, digital advertising, large scale data collection, and growing corporate scale and power — as well as the corresponding debates about content controls, encryption, privacy protection, information security, and antitrust regulation. While the primary case material is from the US (both state and national) the global nature of the internet means that the divergent policy trajectories of the European Union, China, and countries like India are a central theme throughout the course.
This is a research-oriented graduate class on human-centered aspects in data management and analysis across the end-to-end data science/AI lifecycle. The class will entail reading and discussion of classical and modern research papers in this space. As part of this class, students will undertake a research project in this space. Students taking the class should have taken a database or data engineering class, at the level of INFO 258 / DATA 101 / COMPSCI 186, and/or have experience working with database or data engineering tools.
Biosensory computing is the multidisciplinary study and development of systems and practices that sense, represent, communicate, and interpret biological signals from the body.
Biosignals are expansive in scope, and can enable a diverse range of biosensory computing applications. They can include physiological (e.g., ECG/PPG, EDA, EEG) and kinesthetic signals (e.g., accelerometry, eye gaze, facial expressions). Many inferences can be drawn about the person from these signals, including their activities, emotional and mental states, health, and even their identities, intentions, memories, and thoughts.
While generated by the person, biosensory data have important characteristics that distinguish them from other types of user-generated data. They are intimate yet leakable, precise yet ambiguous, familiar yet unverifiable, and have limited controllability. Therefore, responsible stewardship of biosensory data must be in place before the full potential of biosensory computing can be realized.
This multidisciplinary course will explore the intellectual foundations and research advances in biosensory computing. We will survey the range of biosensing modalities and technologies, study temporal and spectral data analysis and visualization techniques, interrogate the designs of novel biosensing applications, and tackle issues of user privacy and research ethics. Students signing up for the 3-unit option will continue in the second half of the semester with a student-led research project.
One hour colloquium per week. Must be taken on a satisfactory/unsatisfactory basis. Prerequisites: Ph.D. standing in the School of Information. Colloquia, discussion, and readings designed to introduce students to the range of interests of the school.
Topics in information management and systems and related fields. Specific topics vary from year to year. May be repeated for credit, with change of content. May be offered as a two semester sequence.